15,044 research outputs found

    New Methods of Efficient Base Station Control for Green Wireless Communications

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์ด๋ณ‘๊ธฐ.This dissertation reports a study on developing new methods of efficient base station (BS) control for green wireless communications. The BS control schemes may be classified into three different types depending on the time scale โ€” hours based, minutes based, and milli-seconds based. Specifically, hours basis pertains to determining which BSs to switch on or offminutes basis pertains to user equipment (UE) associationand milli-seconds basis pertains to UE scheduling and radio resource allocation. For system model, the dissertation considers two different models โ€” heterogeneous networks composed of cellular networks and wireless local area networks (WLANs), and cellular networks adopting orthogonal frequency division multiple access (OFDMA) with carrier aggregation (CA). By combining each system model with a pertinent BS control scheme, the dissertation presents three new methods for green wireless communications: 1) BS switching on/off and UE association in heterogeneous networks, 2) optimal radio resource allocation in heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA based cellular networks. The first part of the dissertation presents an algorithm that performs BS switchingon/off and UE association jointly in heterogeneous networks composed of cellular networks and WLANs. It first formulates a general problem which minimizes the total cost function which is designed to balance the energy consumption of overall network and the revenue of cellular networks. Given that the time scale for determining the set of active BSs is much larger than that for UE association, the problem may be decomposed into a UE association algorithm and a BS switching on/off algorithm, and then an optimal UE association policy may be devised for the UE association problem. Since BS switching-on/off problem is a challenging combinatorial problem, two heuristic algorithms are proposed based on the total cost function and the density of access points of WLANs within the coverage of each BS, respectively. According to simulations, the two heuristic algorithms turn out to considerably reduce energy consumption when compared with the case where all the BSs are always turned on. The second part of the dissertation presents an energy-per-bit minimized radioresource allocation scheme in heterogeneous networks equipped with multi-homing capability which connects to different wireless interfaces simultaneously. Specifically, an optimization problem is formulated for the objective of minimizing the energy-per-bit which takes a form of nonlinear fractional programming. Then, a parametric optimization problem is derived out of that fractional programming and the original problem is solved by using a double-loop iteration method. In each iteration, the optimal resource allocation policy is derived by applying Lagrangian duality and an efficient dual update method. In addition, suboptimal resource allocation algorithms are developed by using the properties of the optimal resource allocation policy. Simulation results reveal that the optimal allocation algorithm improves energy efficiency significantly over the existing resource allocation algorithms designed for homogeneous networks and its performance is superior to suboptimal algorithms in reducing energy consumption as well as in enhancing network energy efficiency. The third part of the dissertation presents an energy efficient scheduling algorithm for CA in OFDMA based wireless networks. In support of this, the energy efficiency is newly defined as the ratio of the time-averaged downlink data rate and the time-averaged power consumption of the UE, which is important especially for battery-constrained UEs. Then, a component carrier and resource block allocation problem is formulated such that the proportional fairness of the energy efficiency is guaranteed. Since it is very complicated to determine the optimal solution, a low complexity energy-efficient scheduling algorithm is developed, which approaches the optimal algorithm. Simulation results demonstrate that the proposed scheduling scheme performs close to the optimal scheme and outperforms the existing scheduling schemes for CA.Abstract i List of Figures viii List of Tables x 1 Introduction 1 2 A Joint Algorithm for Base Station Operation and User Association in Heterogeneous Networks 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 UE Association Algorithm . . . . . . . . . . . . . . . . . . . . . . 14 2.5 BS Switching-on/off Algorithm . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Cost Function Based (CFB) Algorithm . . . . . . . . . . . 19 2.5.2 AP Density Based (ADB) Algorithm . . . . . . . . . . . . 19 2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Energy-per-Bit Minimized Radio Resource Allocation in Heterogeneous Networks 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 System Model and Problem Formulation . . . . . . . . . . . . . . . 30 3.3 Parametric Approach to Fractional Programming . . . . . . . . . . 36 3.3.1 Parametric Approach . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Double-Loop Iteration to Determine Optimal ฮธ . . . . . . . 38 3.4 Optimal Resource Allocation Algorithm . . . . . . . . . . . . . . . 39 3.4.1 Optimal Allocation of Subcarrier and Power . . . . . . . . . 41 3.4.2 Optimal Allocation of Time Fraction . . . . . . . . . . . . . 44 3.4.3 Lagrangian Multipliers Update Algorithm . . . . . . . . . . 48 3.5 Design of Suboptimal Algorithms . . . . . . . . . . . . . . . . . . 51 3.5.1 Time-Fraction Allocation First (TAF) Algorithm . . . . . . 51 3.5.2 Normalized Time-Fraction Allocation (NTA) Algorithm . . 53 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Energy Efficient Scheduling for Carrier Aggregation in OFDMA Based Wireless Networks 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Energy Efficiency Proportional Fairness (EEPF) Scheduling . . . . 74 4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Conclusion 87 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 91 References 93Docto

    5G green cellular networks considering power allocation schemes

    Full text link
    It is important to assess the effect of transmit power allocation schemes on the energy consumption on random cellular networks. The energy efficiency of 5G green cellular networks with average and water-filling power allocation schemes is studied in this paper. Based on the proposed interference and achievable rate model, an energy efficiency model is proposed for MIMO random cellular networks. Furthermore, the energy efficiency with average and water-filling power allocation schemes are presented, respectively. Numerical results indicate that the maximum limits of energy efficiency are always there for MIMO random cellular networks with different intensity ratios of mobile stations (MSs) to base stations (BSs) and channel conditions. Compared with the average power allocation scheme, the water-filling scheme is shown to improve the energy efficiency of MIMO random cellular networks when channel state information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog
    • โ€ฆ
    corecore