47 research outputs found

    Energy Efficient Peak Power Reduction in OFDM with Amplitude Predistortion Aided by Orthogonal Pilots

    Get PDF
    The high Peak-to-Average Power Ratio (PAPR) is a main drawback of Orthogonal Frequency Division Multiplexing (OFDM) systems. We propose a two-step technique to reduce the PAPR consisting of a metric-based constellation extension method, such as Simple Amplitude Predistortion (SAP) algorithm, aided by Orthogonal Pilot Sequences (OPS) in a previous step, where we also provide a low-complex implementation of OPS scheme. We show that our proposal, named OP-SAP, outperforms previous approaches in terms of PAPR reduction, due to joining the benefits of Orthogonal Pilots with SAP algorithm. Moreover, it is energy efficient within two aspects: transmitted energy and implementation energy. OP-SAP saves up to 57% of transmitted energy per predistorted symbol compared to SAP. Regarding implementation energy, PAPR reduction techniques introduce some additional computational complexity, which requires extra cycles in the processor that demand energy consumption. We present an exhaustive analysis on computational power cost that shows the low power consumption of OP-SAP compared to other methods as SeLected Mapping (SLM), what yields a remarkable energy saving in its practical implementation.This work was supported in part by the Spanish National Projects GRE3N-SYST (TEC2011-29006-C03-03) and COMONSENS (CSD2008-00010), FundaciĂłn Carolina (Spain), and SENESCYT (Ecuador).Publicad

    Comparison of architectures for PAPR reduction in OFDM combining pilot symbols with constellation extension

    Get PDF
    The Proceeding at: IEEE Eurocon Conference, took place at 2013, July 01-04, in Zagreb (Croacia)A main drawback of Orthogonal Frequency Division Multiplexing (OFDM) systems is that they suffer from a high Peak-to-Average Power Ratio (PAPR) at the transmitted signal. We propose three different architectures of a PAPR reduction technique combining pilot symbols with constellation extension. These architectures make use of a metric-based amplitude predistortion algorithm for the constellation extension embedded with orthogonal pilot symbols. Since neither the constellation extension nor the orthogonal pilots degrade the Bit Error Rate (BER), then the combined architectures also guarantee system performance. The three proposals outperform the previous algorithms (SAP and OPS) in terms of PAPR reduction, due to adequately joining pilots symbols with constellation extension. Moreover, the three architectures are examined from a complexity point of view, yielding a comparison in terms of computational load, what is straightforwardly related to implementation energy efficiency.This work has been partly funded by the Spanish national projects GRE3N-SYST (TEC2011-29006-C03-03) and COMONSENS (CSD2008-00010), and SENESCYT (Ecuador).Publicad

    Performance of OPS-SAP technique for PAPR reduction in IEEE 802.11p scenarios

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are wireless networks that emerged thanks to the rapid evolution of wireless technologies and the automotive industry. The IEEE 802.11p standard is part of a group of standards related to all layers of protocols for Wireless Access in Vehicular Environment (WAVE) communications, which defines Medium Access Control (MAC) and Physical (PHY) levels. The PHY layer of IEEE 802.11p is essentially based on Orthogonal Frequency Division Multiplexing (OFDM) due to its advantages. However, OFDM signal suffers from high Peak-to-Average Power Ratio (PAPR) at the transmitter side, which causes a significant power efficiency penalty. An efficient peak power reduction technique is Simple Amplitude Predistortion aided by Orthogonal Pilot Sequences (OPS-SAP), which consists in moving certain outer constellation points of the frequency-domain OFDM symbol. In this paper, we propose the application of this OPS-SAP scheme in the IEEE 802.11p scenario, and, moreover, its evaluation under a complete PHY layer.This work has been supported by the Spanish National Projects GRE3N-SYST (TEC2011-29006-C03-03) and ELISA (TEC2014-59255-C3-3-R) and also by Escuela Politécnica a Nacional (Ecuador) by PII-DETRI-01-2016 Project

    PAPR Reduction via Constellation Extension in OFDM Systems Using Generalized Benders Decomposition and Branch-and-Bound Techniques

    Get PDF
    In this paper, a novel constellation extension (CE)-based approach is presented to address the high peak-to-average power ratio (PAPR) problem at the transmitter side, which is an important drawback of orthogonal frequency-division multiplexing (OFDM) systems. This new proposal is formulated as a mixed-integer nonlinear programming optimization problem, which employs generalized Benders decomposition (GBD) and branch-and-bound (BB) methods to determine the most adequate extension factor and the optimum set of input symbols to be extended within a proper quarter plane of the constellation. The optimum technique based on GBD, which is denoted as GBD for constellation extension (GBDCE), provides a bound with relevant improvement in terms of PAPR reduction compared with other CE techniques, although it may exhibit slow convergence. To avoid excessive processing time in practical systems, the suboptimum BB for constellation extension (BBCE) scheme is proposed. Simulation results show that BBCE achieves a significant PAPR reduction, providing a good tradeoff between complexity and performance. We also show that the BBCE scheme performs satisfactorily in terms of power spectral density and bit error rate in the presence of a nonlinear high-power amplifier

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications (EMPhAtiC) Document Number D3.3 Reduction of PAPR and non linearities effects

    Get PDF
    Livrable d'un projet Européen EMPHATICLike other multicarrier modulation techniques, FBMC suffers from high peak-to-average power ratio (PAPR), impacting its performance in the presence of a nonlinear high power amplifier (HPA) in two ways. The first impact is an in-band distortion affecting the error rate performance of the link. The second impact is an out-of-band effect appearing as power spectral density (PSD) regrowth, making the coexistence between FBMC based broad-band Professional Mobile Radio (PMR) systems with existing narrowband systems difficult to achieve. This report addresses first the theoretical analysis of in-band HPA distortions in terms of Bit Error Rate. Also, the out-of band impact of HPA nonlinearities is studied in terms of PSD regrowth prediction. Furthermore, the problem of PAPR reduction is addressed along with some HPA linearization techniques and nonlinearity compensation approaches
    corecore