498 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Group Sparse Precoding for Cloud-RAN with Multiple User Antennas

    Full text link
    Cloud radio access network (C-RAN) has become a promising network architecture to support the massive data traffic in the next generation cellular networks. In a C-RAN, a massive number of low-cost remote antenna ports (RAPs) are connected to a single baseband unit (BBU) pool via high-speed low-latency fronthaul links, which enables efficient resource allocation and interference management. As the RAPs are geographically distributed, the group sparse beamforming schemes attracts extensive studies, where a subset of RAPs is assigned to be active and a high spectral efficiency can be achieved. However, most studies assumes that each user is equipped with a single antenna. How to design the group sparse precoder for the multiple antenna users remains little understood, as it requires the joint optimization of the mutual coupling transmit and receive beamformers. This paper formulates an optimal joint RAP selection and precoding design problem in a C-RAN with multiple antennas at each user. Specifically, we assume a fixed transmit power constraint for each RAP, and investigate the optimal tradeoff between the sum rate and the number of active RAPs. Motivated by the compressive sensing theory, this paper formulates the group sparse precoding problem by inducing the â„“0\ell_0-norm as a penalty and then uses the reweighted â„“1\ell_1 heuristic to find a solution. By adopting the idea of block diagonalization precoding, the problem can be formulated as a convex optimization, and an efficient algorithm is proposed based on its Lagrangian dual. Simulation results verify that our proposed algorithm can achieve almost the same sum rate as that obtained from exhaustive search

    Edge Cache-assisted Secure Low-Latency Millimeter Wave Transmission

    Get PDF
    In this paper, we consider an edge cache-assisted millimeter wave cloud radio access network (C-RAN). Each remote radio head (RRH) in the C-RAN has a local cache, which can pre-fetch and store the files requested by the actuators. Multiple RRHs form a cluster to cooperatively serve the actuators, which acquire their required files either from the local caches or from the central processor via multicast fronthaul links. For such a scenario, we formulate a beamforming design problem to minimize the secure transmission delay under transmit power constraint of each RRH. Due to the difficulty of directly solving the formulated problem, we divide it into two independent ones: {\textit{i)}} minimizing the fronthaul transmission delay by jointly optimizing the transmit and receive beamforming; {\textit{ii)}} minimizing the maximum access transmission delay by jointly designing cooperative beamforming among RRHs. An alternatively iterative algorithm is proposed to solve the first optimization problem. For the latter, we first design the analog beamforming based on the channel state information of the actuators. Then, with the aid of successive convex approximation and SS-procedure techniques, a semidefinite program (SDP) is formulated, and an iterative algorithm is proposed through SDP relaxation. Finally, simulation results are provided to verify the performance of the proposed schemes.Comment: IEEE_IoT, Accep
    • …
    corecore