8 research outputs found

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck

    Visible light and device-to-device communications: system analysis and implementation

    Get PDF
    Mención internacional en el título de doctorRadio-frequency based wireless communications have revolutionized our society. Thanks to the important wireless communication technologiesWi-Fi, LTE, and so on, people can now enjoy high data rate and perversive connection while surfing the Internet. However, new problems and demands are rising in today’s wireless networks. Increasing capacity demands are requiring more bandwidth and various wireless radio technologies are exacerbating the spectrum problem. Now technologies and paradigms are needed to meet these needs. In this thesis, I investigate two technologies towards this direction: Visible Light Communication (VLC) and Device-to-Device (D2D) communication. Although more and more researchers are becoming interested in VLC, the lacking of an opensource platform for VLC research is perverting the fast investigations of VLC. To solve this problem, I design, implement, and evaluate the first open-source platform OpenVLC for embedded VLC research. OpenVLC employs cost-efficient and off-the-shelf optical components and electronics to provide a research platform. The software solutions are developed as a Linux driver and can easily connect to the TCP/IP layers. This allows for the adoption of various Linux diagnostic tools to evaluate the VLC’s properties and performance. Based on OpenVLC, I propose a new MAC protocol that enable the intra-frame bidirectional transmissions in networks of visible LEDs. The method adopts only a single LED at each node for both transmission and reception. Through this technology, the system’s throughput can be improved a lot and the hidden-node problem can be alleviated greatly. Motivated by the envision of the Internet of lights, I study how to provide stable visible light links in VLC. I identify the limitations and tradeoff of two different types of optical receivers photodiode and LED, and design and implement a new optical data link layer that was resilient to dynamic environments. On the other hands, to meet the increasing demands, small cells are proposed and deployed in latest cellular networks. As a result, the number of users served by each cell is decreasing. As the opportunistic gain increases as a concave function of active users, in small cells and when dynamic traffic load are considered, the opportunistic gain will lost. To recoup the opportunistic gain, I propose a base-station transparent method based on D2D communication to dispatch traffic among devices. Dynamic programming is used to find the optimal dispatching policy. The results show this method can improve the average packet transfer delay greatly. To increase the opportunistic gain by a further step, I propose a base-station initiated policy to solve the same problem. An algorithm is therefore designed and implemented, and its performance shows that it can reduce the frame loss ratio significantly.This work has been supported by IMDEA Networks InstitutePrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Thiemo Voigt.- Secretario: Pablo Serrano Yáñez-Mingot.- Vocal: David Malon

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    Energy Efficient Channel Access Mechanism for IEEE 802.11ah based Networks

    Get PDF
    PhDIEEE 802.11ah is designed to support battery powered devices that are required to serve for several years in the Internet of Things networks. The Restricted Access Window (RAW) has been introduced in IEEE 802.11ah to address the scalability of thousands of densely deployed devices. As the RAW sizes entail the consumed energy to support the transmitting devices in the network, hence the control mechanism for RAW should be carefully devised for improving the overall energy e ciency of IEEE 802.11ah. This thesis presents a two-stage adaptive RAW scheme for IEEE 802.11ah to optimise the energy efficiency of massive channel access and transmission in the uplink communications for highly dense networks. The proposed scheme adaptively controls the RAW sizes and device transmission access by taking into account the number of devices per RAW, retransmission mechanism, harvested-energy and prioritised access. The scheme has four completely novel control blocks: RAW size control that adaptively adjusts the RAW sizes according to different number of devices and application types in the networks. RAW retransmission control that improves the channel utilisation by retransmitting the collided packets at the subsequent slot in the same RAW. Harvested-energy powered access control that adjusts the RAW sizes with the consideration of the uncertain amount of harvested-energy in each device and channel conditions. Priority-aware channel access control that reduces the collisions of high-priority packets in the time-critical networks. The performance of the proposed controls is evaluated in Matlab under different net work scenarios. Simulation results show that the proposed controls improve the network performances in terms of energy efficiency, packet delivery ratio and delay as compared to the existing window control

    Scaling Laws for Vehicular Networks

    Get PDF
    Equipping automobiles with wireless communications and networking capabilities is becoming the frontier in the evolution to the next generation intelligent transportation systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, information generated by the vehicle-borne computer, vehicle control system, on-board sensors, or roadside infrastructure, can be effectively disseminated among vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away, known as vehicular networks (VANETs), to enhance the situational awareness of vehicles and provide motorist/passengers with an information-rich travel environment. Scaling law for throughput capacity and delay in wireless networks has been considered as one of the most fundamental issues, which characterizes the trend of throughput/delay behavior when the network size increases. The study of scaling laws can lead to a better understanding of intrinsic properties of wireless networks and theoretical guidance on network design and deployment. Moreover, the results could also be applied to predict network performance, especially for the large-scale vehicular networks. However, map-restricted mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling laws studies for VANETs. As an effort to lay a scientific foundation of vehicular networking, my thesis investigates capacity scaling laws for vehicular networks with and without infrastructure, respectively. Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay for a social-proximity vehicular network, where each vehicle has a restricted mobility region around a specific social spot and services are delivered in a store-carry-and-forward paradigm. It has been shown that although the throughput and delay may degrade in a high vehicle density area, it is still possible to achieve almost constant scaling for per vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular networks, the thesis derives the capacity scaling laws for networks with wireless infrastructure, where services are delivered uniformly from infrastructure to all vehicles in the network. The V2V communication is also required to relay the downlink traffic to the vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes, including one mesh gateway), and roadside access points. The downlink capacity scaling is derived for each kind of infrastructure. Considering that the deployment/operation costs of different infrastructure are highly variable, the capacity-cost tradeoffs of different deployments are examined. The results from the thesis demonstrate the feasibility of deploying non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly, the fundamental impact of traffic signals at road intersection on drive-thru Internet access is particularly studied. The thesis analyzes the time-average throughput capacity of a typical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we show a significant throughput gain for vehicles stopping at intersections due to red signals. The results provide a quick and efficient way of determining the Wi-Fi deployment scale according to required quality of services. In summary, the analysis developed and the scaling laws derived in the thesis provide should be very useful for understanding the fundamental performance of vehicular networks

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries
    corecore