121 research outputs found

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Enhancing Cardiovascular Disease Prediction Based on AI and IoT Concepts

    Get PDF
    One-third of all deaths worldwide yearly are attributable to cardiovascular disease (CVD). In contrast to the 7% of the wealthy who experience premature death, 43% of the poor do. Lifestyle diseases like obesity and diabetes are to blame. The importance of early identification of heart disease was demonstrated, and premature mortality was kept to a minimum. Combining clinical and biochemical data is essential for the early diagnosis of heart illness. Numerous IoT-enabled wearable healthcare applications have been created and released in recent years. Although the ability of wearable devices to share patient health data is expanding, it remains challenging to predict and identify health problems. Security, data storage, and patient monitoring are all part of the system. Artificial intelligence (AI) therapies may one day change the face of cardiology by providing doctors with cutting-edge data analysis and therapeutic decision-making resources. As the volume and complexity of data continue to increase, AI tools like machine learning (ML) and deep learning (DL) can assist medical professionals in learning more. Suppose we want to provide medical care to the elderly and those with chronic illnesses in the comfort of their own homes. In that case, we must upgrade our communication and information technology systems. The implemented DNN model's accuracy is amazing at 95.34 % and can yield other noteworthy outcomes when used to identify CVDs. We discuss and suggest the most suitable AI-IoT models for early CVD prediction and detection to reduce computational costs and increase time efficiency

    CDPS-IoT: Cardiovascular Disease Prediction System Based on IoT using Machine Learning

    Get PDF
    Internet of Things, Machine learning, and Cloud computing are the emerging domains of information communication and technology. These techniques can help to save the life of millions in the medical assisted environment and can be utilized in health-care system where health expertise is less available. Fast food consumption increased from the past few decades, which makes up cholesterol, diabetes, and many more problems that affect the heart and other organs of the body. Changing lifestyle is another parameter that results in health issues including cardio-vascular diseases. Affirming to the World Health Organization, the cardiovascular diseases, or heart diseases lead to more death than any other disease globally. The objective of this research is to analyze the available data pertaining to cardiovascular diseases for prediction of heart diseases at an earlier stage to prevent it from occurring. The dataset of heart disease patients was taken from Jammu and Kashmir, India and stored over the cloud. Stored data is then pre-processed and further analyzed using machine learning techniques for the prediction of heart diseases. The analysis of the dataset using numerous machines learning techniques like Random Forest, Decision Tree, Naive based, K-nearest neighbors, and Support Vector Machine revealed the performance metrics (F1 Score, Precision and Recall) for all the techniques which shows that Naive Bayes is better without parameter tuning while Random Forest algorithm proved as the best technique with hyperparameter tuning. In this paper, the proposed model is developed in such a systematic way that the clinical data can be obtained through the use of IoT with the help of available medical sensors to predict cardiovascular diseases on a real-time basis

    One-Dimensional CNN Approach for ECG Arrhythmia Analysis in Fog-Cloud Environments

    Get PDF
    Cardiovascular diseases are considered the number one cause of death across the globe which can be primarily identified by the abnormal heart rhythms of the patients. By generating electrocardiogram (ECG) signals, wearable Internet of Things (IoT) devices can consistently track the patient’s heart rhythms. Although Cloud-based approaches for ECG analysis can achieve some levels of accuracy, they still have some limitations, such as high latency. Conversely, the Fog computing infrastructure is more powerful than edge devices but less capable than Cloud computing for executing compositionally intensive data analytic software. The Fog infrastructure can consist of Fog-based gateways directly connected with the wearable devices to offer many advanced benefits, including low latency and high quality of services. To address these issues, a modular one-dimensional convolution neural network (1D-CNN) approach is proposed in this work. The inference module of the proposed approach is deployable over the Fog infrastructure for analysing the ECG signals and initiating the emergency countermeasures within a minimum delay, whereas its training module is executable on the computationally enriched Cloud data centers. The proposed approach achieves the F1-measure score ≈1 on the MIT-BIH Arrhythmia database when applying GridSearch algorithm with the cross-validation method. This approach has also been implemented on a single-board computer and Google Colab-based hybrid Fog-Cloud infrastructure and embodied to a remote patient monitoring system that shows 25% improvement in the overall response time.</p

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    Smart Health Internet of Thing for Continuous Glucose Monitoring: a Survey

    Get PDF
    Health monitoring system allows patients to monitor the health-related problem to avoid further complications which could result in loss of life. Smart health is one of the categories of a health monitoring system that uses Smartphone’s and sensors to effectively monitor patient health status. However, the smart health internet of thing methods for glucose monitoring still does not provide accurate glucose reading. Hence, diabetes patient can easily loss life. To help understand this challenge, a comprehensive survey focused on smart health internet of thing methods for continuous glucose monitoring was conducted. The paper discusses the benefit and challenge of each method applicable to glucose monitoring. It was observed that several smart health methods required sensor to function. Smart vehicles and remote monitoring have less attention. However, when accommodates can provide future opportunities

    Edge-Based Health Care Monitoring System: Ensemble of Classifier Based Model

    Get PDF
    Health Monitoring System (HMS) is an excellent tool that actually saves lives. It makes use of transmitters to gather information and transmits it wirelessly to a receiver. Essentially, it is much more practical than the large equipment that the majority of hospitals now employ and continuously checks a patient's health data 24/7. The primary goal of this research is to develop a three-layered Ensemble of Classifier model on Edge based Healthcare Monitoring System (ECEHMS) and Gauss Iterated Pelican Optimization Algorithm (GIPOA) including data collection layer, data analytics layer, and presentation layer. As per our ECEHMS-GIPOA, the healthcare dataset is collected from the UCI repository. The data analytics layer performs preprocessing, feature extraction, dimensionality reduction and classification. Data normalization will be done in preprocessing step. Statistical features (Min/Max, SD, Mean, Median), improved higher order statistical features (Skewness, Kurtosis, Entropy), and Technical indicator based features were extracted during Feature Extraction step. Improved Fuzzy C-means clustering (FCM) will be used for handling the Dimensionality reduction issue by clustering the appropriate feature set from the extracted features. Ensemble model is introduced to predict the disease stage that including the models like Deep Maxout Network (DMN), Improved Deep Belief Network (IDBN), and Recurrent Neural Network (RNN). Also, the enhancement in prediction/classification accuracy is assured via optimal training. For which, a GIPOA is introduced. Finally, ECEHMS-GIPOA performance is compared with other conventional approaches like ASO, BWO, SLO, SSO, FPA, and POA
    • …
    corecore