539 research outputs found

    Energy efficient cooperative transmission in single-relay UWB based body area networks

    Full text link
    © 2015 IEEE. Energy efficiency is one of the most critical parameters in ultra-wideband (UWB) based wireless body area networks (WBANs). In this paper, the energy efficiency optimization problem is investigated for cooperative transmission with a single relay in UWB based WBANs. Two practical onbody transmission scenarios are taken into account, namely, along-torso scenario and around-torso scenario. With a proposed single-relay WBAN model, a joint optimal scheme for the energy efficiency optimization is developed, which not only derives the optimal power allocation but also seeks the corresponding optimal relay location for each scenario. Simulation results show that the utilization of a relay node is necessary for the energy efficient transmission in particular for the around-torso scenario and the relay location is an important parameter. With the joint optimal relay location and power allocation, the proposed scheme is able to achieve up to 30 times improvement compared to direct transmission in terms of the energy efficiency when the battery of the sensor node is very limited, which indicates that it is an effective way to prolong the network lifetime in WBANs

    Joint optimal relay location and power allocation for ultra-wideband-based wireless body area networks

    Full text link
    © 2015, Ding et al.; licensee Springer. In this paper, we study the joint optimal relay location and power allocation problem for single-relay-assisted ultra-wideband (UWB)-based wireless body area networks (WBANs). Specifically, to optimize spectral efficiency (SE) for single-relay cooperative communication in UWB-based WBANs, we seek the relay with the optimal location together with the corresponding optimal power allocation. With proposed relay-location-based network models, the SE maximization problems are mathematically formulated by considering three practical scenarios, namely, along-torso scenario, around-torso scenario, and in-body scenario. Taking into account realistic power considerations for each scenario, the optimal relay location and power allocation are jointly derived and analyzed. Numerical results show the necessity of utilization of relay node for the spectral and energy-efficient transmission in UWB-based WBANs and demonstrate the effectiveness of the proposed scheme in particular for the around-torso and in-body scenarios. With the joint optimal relay location and power allocation, the proposed scheme is able to prolong the network lifetime and extend the transmission range in WBANs significantly compared to direct transmission

    Multi-hop Cooperative Relaying for Energy Efficient In Vivo Communications

    Get PDF
    This paper investigates cooperative relaying to support energy efficient in vivo communications. In such a network, the in vivo source nodes transmit their sensing information to an on-body destination node either via direct communications or by employing on-body cooperative relay nodes in order to promote energy efficiency. Two relay modes are investigated, namely single-hop and multi-hop (two-hop) relaying. In this context, the paper objective is to select the optimal transmission mode (direct, single-hop, or two-hop relaying) and relay assignment (if cooperative relaying is adopted) for each source node that results in the minimum per bit average energy consumption for the in vivo network. The problem is formulated as a binary program that can be efficiently solved using commercial optimization solvers. Numerical results demonstrate the significant improvement in energy consumption and quality-of-service (QoS) support when multi-hop communication is adopted

    Optimal spectral efficiency for cooperative UWB based on-body area networks

    Full text link
    © 2014 IEEE. In this paper, spectral efficiency (SE) is investigated for cooperative ultra-wideband (UWB) based on-body area networks (OBANs). To optimize SE for single-relay cooperation, an equivalent generic cooperative model in UWB based OBANs is established first. With the proposed model, joint optimal relay location and power allocation for cooperation is then derived to solve the SE maximization problem. Simulation results show that direct transmission is preferable for UWB based OBANs when the transmitter and receiver are located on the same side of the human body. However, the joint optimal cooperative transmission scheme can achieve a significant improvement on SE compared with direct transmission when the transmitter and receiver are located on the different sides of the human body, which indicates that cooperation is more feasible to be applied in this case due to its robustness to the significant path loss

    Energy-efficient distributed beamforming in UWB based implant body area networks

    Full text link
    © 2015 IEEE. In this paper, we investigate a distributed beamforming problem to optimize energy efficiency (EE) in ultra-wideband (UWB) based implant body area networks (IBANs). To evaluate the impact of relay location on the EE, a relay location based cooperative network model is proposed, where multiple on-body relays are employed to assist an implant node to communicate with a BAN coordinator. With the proposed model, the EE optimization problem is mathematically formulated as a non-convex optimization problem. Sequential quadratic programming (SQP) combined with scatter search are applied to find the corresponding optimal solution. Simulation results illustrate that the proposed beamforming scheme outperforms other transmission schemes. A remarkable improvement can be achieved not only in EE but also in spectral efficiency (SE) compared to direct transmission. Moreover, numerical examples show that the relay location has a significant impact on the EE performance

    Spectral efficiency optimization with distributed beamforming in UWB based implant body area networks

    Full text link
    Copyright © 2014 ICST. In this paper, a distributed beamforming problem is investigated based on spectral efficiency (SE) optimization for ultra-wideband (UWB) based implant body area networks (IBANs). We consider a relay network consisting of one implant source, several wearable relays, and one body network coordinator under the assumption that the individual relay power is constrained due to the Federal Communications Commission (FCC) regulations for UWB signals. Taking into account realistic wireless channels and relay locations, the SE optimization problem is mathematically formulated and solved by using convex optimization. Simulation results show that the proposed beamforming scheme is superior to other transmission schemes. Moreover, our numerical examples reveal that the relay location has a significant impact on the beamforming performance and the proposed beamforming scheme provides an efficient way to prolong the lifetime of the implant node

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Critical data-based incremental cooperative communication for wireless body area network

    Get PDF
    Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body’s vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission (‘direct transmission’) is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC

    Comprehensive performance analysis of fully cooperative communication in WBANs

    Get PDF
    © 2013 IEEE. While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner's data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namel,y error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs
    • …
    corecore