871 research outputs found

    A reliable and energy efficient cognitive radio multichannel MAC protocol for ad-hoc networks

    Get PDF
    A thesis submitted in partial ful llment for the degree of Doctor of Philosophy in the Department of Computer Science and Technology, University of BedfordshireRecent research has shown that several spectrum bands are mostly underutilised. To resolve the issue of underutilisation of spectrum bands across the networks, the concept of Cognitive Radio (CR) technology was envisaged. The CR technology allows Secondary Users (SUs) to acquire opportunistic access to large parts of the underutilised spectrum bands on wireless networks. In CR networks, SUs may scan and identify the vacant channels in the wireless spectrum bands and then dynamically tune their receivers to identify vacant channels and transmitters, and commence communication among themselves without causing interference to Primary/Licensed Users (PUs). Despite the developments in the eld of CR technology, recent research shows that still there are many challenges unaddressed in the eld. Thus, there is a need to reduce additional handshaking over control and data channels, to minimise large sized control frames and to introduce reliable channel selection process and maintenance of SUs' communication when PUs return to a licensed channel. A fundamental challenge a ecting this technology is the identi cation of reliable Data Channels (DCHs) for SUs communication among available channels and the continuation of communication when the PU returns. This doctoral research investigates in detail how to resolve issues related to the protocol design for Cognitive Radio Networks (CRNs) on Medium Access Layers (MAC) for Ad-Hoc networks. As a result, a novel Reliable and Energy e cient Cognitive Radio multi-channel MAC protocol (RECR-MAC) for Ad-Hoc networks is proposed to overcome the shortcomings mentioned. After discussing the background, operation and architecture of CR technology, this research proposes numerous platforms and testbeds for the deployment of personal and commercial applications of the CRNs. Side by side, optimised control frames and a reduced number of handshakes over the CCH are suggested to extend the transmitting time for data communication. In addition, the reliable channel selection process is introduced instead of random selection of DCHs for successful data communication among the SUs. In RECR-MAC, the objective of every SU is to select reliable DCHs, thereby ensuring high connectivity and exchanging the successful data frames across the cognitive network. Moreover, the selection criteria of the DCHs are based on multiple factors, such as an initial selection based on the maximum free time recorded by the SUs over the DCH channel ranking, which is proportional to the number of positive/negative acknowledgements, and the past history of DCHs. If more than two DCHs have an equal value during the second, third and following iterations, then the DCHs are selected based upon the maximum free time. The priorities of the DCHs are then assigned based on Reliable Data Channels, that is, RDCH 1, RDCH 2, RDCH 3, and RDCH 4 respectively (where RDCH 1 and RDCH 2 have the highest priority, DRCH 3 and RDCH 4 have the next priority, and so on). The impacts of channel selection process and Backup Data Channel (BDC) over the proposed RECR-MAC protocol are analysed in combination with comparative benchmark CR-MAC protocols based on the timing diagrams proposed. Finally, the RECR-MAC protocol is validated by using a MATLAB simulator with PU impact over the DCHs, both with and without BDC, and by comparing results, such as communication time, transmitting energy and throughput, with benchmark CR-MAC protocols

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Effect of Location Accuracy and Shadowing on the Probability of Non-Interfering Concurrent Transmissions in Cognitive Ad Hoc Networks

    Get PDF
    Cognitive radio ad hoc systems can coexist with a primary network in a scanning-free region, which can be dimensioned by location awareness. This coexistence of networks improves system throughput and increases the efficiency of radio spectrum utilization. However, the location accuracy of real positioning systems affects the right dimensioning of the concurrent transmission region. Moreover, an ad hoc connection may not be able to coexist with the primary link due to the shadowing effect. In this paper we investigate the impact of location accuracy on the concurrent transmission probability and analyze the reliability of concurrent transmissions when shadowing is taken into account. A new analytical model is proposed, which allows to estimate the resulting secure region when the localization uncertainty range is known. Computer simulations show the dependency between the location accuracy and the performance of the proposed topology, as well as the reliability of the resulting secure region

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    • …
    corecore