390 research outputs found

    Real life Applications of Internet of Things

    Get PDF
    The Internet of Things is the next technological revolution after the revolution of computer and internet. IoT integrates the new technologies of computing and communication (e.g. Sensor networks, RFID, Mobile communication and IPV6 etc). The Internet of Things is an emerging topic of technical, social, and economic significance. The term Internet of Things generally refers to scenarios where network connectivity and computing capability extends to objects, sensors and everyday items not normally considered computers, allowing these devices to generate exchange and consume data with minimal human intervention. Internet connect “all people”, Internet of Things connect “all things”. Interconnection of Things or Objects or Machines, e.g., sensors, actuators, mobile phones, electronic devices, home appliances, any existing items and interact with each other via Interne

    Performance Boundaries of Massive Floating Car Data Offloading

    Get PDF
    International audienceFloating Car Data (FCD) consist of information generated by moving vehicles and uploaded to Internet-based control centers for processing and analysis. As upcoming mobile services based on or built for networked vehicles largely rely on uplink transfers of small-sized but high-frequency messages, FCD traffic is expected to become increasingly common in the next few years. Presently, FCD are managed through a traditional cellular network paradigm : however, the scalability of such a model is unclear in the face of massive FCD upload, involving large fractions of the vehicles over short time intervals. In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to partially relieve the cellular infrastructure from FCD traffic. Specifically, we study the performance boundaries of such a FCD offloading approach in presence of best- and worst-case data aggregation possibilities at vehicles. We show the gain that can be obtained by offloading FCD via vehicular communication, and propose a simple distributed heuristic that has nearly optimal performance under any FCD aggregation model

    Floating Car Data Technology

    Get PDF
    The limiting conditions of traffic in cities, together with the complex and dynamic traffic flows, require an efficient and systematic management and information provision for the traffic participants, with the goal to achieve better utilisation of traffic resources and preserve sustainable mobility. In that context, it is important to identify the traffic flow location features, which requires data and information. This paper presents the application of mobile vehicles for the collection of real time traffic flow data. Such data have become an important source of traffic data, since they can be collected in a simple and cost-efficient way, enabling higher coverage than the conventional approaches, despite the reliability issues. The term referring to that type of data collection, commonly used in scientific and professional literature is FCD (Floating Car Data) and “Probe vehicle”. The efficiency presentation of applying this extensive data source for retrieving necessary parameters and information related to the achievement of sustainable mobility is the final objective of this paper. A description of modern technologies that serve as a basis for probe vehicle data collection has been provided: a geographical information system (GIS), global navigation satellite system (GNSS) and related wireless communication. Within the key technologies review, the development possibilities of data collection by mobile sensors have also been presented

    High-level Architecture and Compelling Technologies for an Advanced Web-based Vehicle Routing and Scheduling System for Urban Freight Transportation

    Get PDF
    The search for a more efficient routing and scheduling, the improvement of service’s level and the increasing complexity of real-world distributive contexts are contingent variables that generate the need for a system’s architecture that may be holistic, innovative, scalable and reliable. Hence, new technologies and a lucid awareness of involved actors and infrastructures, provide the basis to create a more efficient routing and scheduling architecture for enterprises

    Emergency message dissemination schemes based on congestion avoidance in VANET and vehicular FoG computing

    Get PDF
    With the rapid growth in connected vehicles, FoG-assisted vehicular ad hoc network (VANET) is an emerging and novel field of research. For information sharing, a number of messages are exchanged in various applications, including traffic monitoring and area-specific live weather and social aspects monitoring. It is quite challenging where vehicles' speed, direction, and density of neighbors on the move are not consistent. In this scenario, congestion avoidance is also quite challenging to avoid communication loss during busy hours or in emergency cases. This paper presents emergency message dissemination schemes that are based on congestion avoidance scenario in VANET and vehicular FoG computing. In the similar vein, FoG-assisted VANET architecture is explored that can efficiently manage the message congestion scenarios. We present a taxonomy of schemes that address message congestion avoidance. Next, we have included a discussion about comparison of congestion avoidance schemes to highlight the strengths and weaknesses. We have also identified that FoG servers help to reduce the accessibility delays and congestion as compared to directly approaching cloud for all requests in linkage with big data repositories. For the dependable applicability of FoG in VANET, we have identified a number of open research challenges. © 2013 IEEE

    Novel Common Vehicle Information Model (CVIM) for Future Automotive Vehicle Big Data Marketplaces

    Full text link
    Even though connectivity services have been introduced in many of the most recent car models, access to vehicle data is currently limited due to its proprietary nature. The European project AutoMat has therefore developed an open Marketplace providing a single point of access for brand-independent vehicle data. Thereby, vehicle sensor data can be leveraged for the design and implementation of entirely new services even beyond trafficrelated applications (such as hyper-local traffic forecasts). This paper presents the architecture for a Vehicle Big Data Marketplace as enabler of cross-sectorial and innovative vehicle data services. Therefore, the novel Common Vehicle Information Model (CVIM) is defined as an open and harmonized data model, allowing the aggregation of brand-independent and generic data sets. Within this work the realization of a prototype CVIM and Marketplace implementation is presented. The two use-cases of local weather prediction and road quality measurements are introduced to show the applicability of the AutoMat concept and prototype to non-automotive applicatio

    A Communications-Oriented Perspective on Traffic Management Systems for Smart Cities: Challenges and Innovative Approaches

    Get PDF
    The growing size of cities and increasing population mobility have determined a rapid increase in the number of vehicles on the roads, which has resulted in many challenges for road traffic management authorities in relation to traffic congestion, accidents, and air pollution. Over the recent years, researchers from both industry and academia have been focusing their efforts on exploiting the advances in sensing, communication, and dynamic adaptive technologies to make the existing road traffic management systems (TMSs) more efficient to cope with the aforementioned issues in future smart cities. However, these efforts are still insufficient to build a reliable and secure TMS that can handle the foreseeable rise of population and vehicles in smart cities. In this survey, we present an up-to-date review of the different technologies used in the different phases involved in a TMS and discuss the potential use of smart cars and social media to enable fast and more accurate traffic congestion detection and mitigation. We also provide a thorough study of the security threats that may jeopardize the efficiency of the TMS and endanger drivers' lives. Furthermore, the most significant and recent European and worldwide projects dealing with traffic congestion issues are briefly discussed to highlight their contribution to the advancement of smart transportation. Finally, we discuss some open challenges and present our own vision to develop robust TMSs for future smart cities

    VANET-enabled eco-friendly road characteristics-aware routing for vehicular traffic

    Get PDF
    There is growing awareness of the dangers of climate change caused by greenhouse gases. In the coming decades this could result in numerous disasters such as heat-waves, flooding and crop failures. A major contributor to the total amount of greenhouse gas emissions is the transport sector, particularly private vehicles. Traffic congestion involving private vehicles also causes a lot of wasted time and stress to commuters. At the same time new wireless technologies such as Vehicular Ad-Hoc Networks (VANETs) are being developed which could allow vehicles to communicate with each other. These could enable a number of innovative schemes to reduce traffic congestion and greenhouse gas emissions. 1) EcoTrec is a VANET-based system which allows vehicles to exchange messages regarding traffic congestion and road conditions, such as roughness and gradient. Each vehicle uses the messages it has received to build a model of nearby roads and the traffic on them. The EcoTrec Algorithm then recommends the most fuel efficient route for the vehicles to follow. 2) Time-Ants is a swarm based algorithm that considers not only the amount of cars in the spatial domain but also the amoumt in the time domain. This allows the system to build a model of the traffic congestion throughout the day. As traffic patterns are broadly similar for weekdays this gives us a good idea of what traffic will be like allowing us to route the vehicles more efficiently using the Time-Ants Algorithm. 3) Electric Vehicle enhanced Dedicated Bus Lanes (E-DBL) proposes allowing electric vehicles onto the bus lanes. Such an approach could allow a reduction in traffic congestion on the regular lanes without greatly impeding the buses. It would also encourage uptake of electric vehicles. 4) A comprehensive survey of issues associated with communication centred traffic management systems was carried out
    corecore