511 research outputs found

    Energy-Aware Traffic Offloading for Green Heterogeneous Networks

    Full text link
    With small cell base stations (SBSs) densely deployed in addition to conventional macro base stations (MBSs), the heterogeneous cellular network (HCN) architecture can effectively boost network capacity. To support the huge power demand of HCNs, renewable energy harvesting technologies can be leveraged. In this paper, we aim to make efficient use of the harvested energy for on-grid power saving while satisfying the quality of service (QoS) requirement. To this end, energy-aware traffic offloading schemes are proposed, whereby user associations, ON-OFF states of SBSs, and power control are jointly optimized according to the statistical information of energy arrival and traffic load. Specifically, for the single SBS case, the power saving gain achieved by activating the SBS is derived in closed form, based on which the SBS activation condition and optimal traffic offloading amount are obtained. Furthermore, a two-stage energy-aware traffic offloading (TEATO) scheme is proposed for the multiple-SBS case, considering various operating characteristics of SBSs with different power sources. Simulation results demonstrate that the proposed scheme can achieve more than 50% power saving gain for typical daily traffic and solar energy profiles, compared with the conventional traffic offloading schemes.Comment: IEEE JSAC (to appear

    Inter-tier Interference Suppression in Heterogeneous Cloud Radio Access Networks

    Full text link
    Incorporating cloud computing into heterogeneous networks, the heterogeneous cloud radio access network (H-CRAN) has been proposed as a promising paradigm to enhance both spectral and energy efficiencies. Developing interference suppression strategies is critical for suppressing the inter-tier interference between remote radio heads (RRHs) and a macro base station (MBS) in H-CRANs. In this paper, inter-tier interference suppression techniques are considered in the contexts of collaborative processing and cooperative radio resource allocation (CRRA). In particular, interference collaboration (IC) and beamforming (BF) are proposed to suppress the inter-tier interference, and their corresponding performance is evaluated. Closed-form expressions for the overall outage probabilities, system capacities, and average bit error rates under these two schemes are derived. Furthermore, IC and BF based CRRA optimization models are presented to maximize the RRH-accessed users' sum rates via power allocation, which is solved with convex optimization. Simulation results demonstrate that the derived expressions for these performance metrics for IC and BF are accurate; and the relative performance between IC and BF schemes depends on system parameters, such as the number of antennas at the MBS, the number of RRHs, and the target signal-to-interference-plus-noise ratio threshold. Furthermore, it is seen that the sum rates of IC and BF schemes increase almost linearly with the transmit power threshold under the proposed CRRA optimization solution

    Heterogeneous Cloud Radio Access Networks: A New Perspective for Enhancing Spectral and Energy Efficiencies

    Full text link
    To mitigate the severe inter-tier interference and enhance limited cooperative gains resulting from the constrained and non-ideal transmissions between adjacent base stations in heterogeneous networks (HetNets), heterogeneous cloud radio access networks (H-CRANs) are proposed as cost-efficient potential solutions through incorporating the cloud computing into HetNets. In this article, state-of-the-art research achievements and challenges on H-CRANs are surveyed. In particular, we discuss issues of system architectures, spectral and energy efficiency performances, and promising key techniques. A great emphasis is given towards promising key techniques in H-CRANs to improve both spectral and energy efficiencies, including cloud computing based coordinated multi-point transmission and reception, large-scale cooperative multiple antenna, cloud computing based cooperative radio resource management, and cloud computing based self-organizing network in the cloud converging scenarios. The major challenges and open issues in terms of theoretical performance with stochastic geometry, fronthaul constrained resource allocation, and standard development that may block the promotion of H-CRANs are discussed as well.Comment: 20 pages, 6 figures, to be published in IEEE Wireless Communication

    Fundamentals of Heterogeneous Cellular Networks with Energy Harvesting

    Full text link
    We develop a new tractable model for K-tier heterogeneous cellular networks (HetNets), where each base station (BS) is powered solely by a self-contained energy harvesting module. The BSs across tiers differ in terms of the energy harvesting rate, energy storage capacity, transmit power and deployment density. Since a BS may not always have enough energy, it may need to be kept OFF and allowed to recharge while nearby users are served by neighboring BSs that are ON. We show that the fraction of time a k^{th} tier BS can be kept ON, termed availability \rho_k, is a fundamental metric of interest. Using tools from random walk theory, fixed point analysis and stochastic geometry, we characterize the set of K-tuples (\rho_1, \rho_2, ... \rho_K), termed the availability region, that is achievable by general uncoordinated operational strategies, where the decision to toggle the current ON/OFF state of a BS is taken independently of the other BSs. If the availability vector corresponding to the optimal system performance, e.g., in terms of rate, lies in this availability region, there is no performance loss due to the presence of unreliable energy sources. As a part of our analysis, we model the temporal dynamics of the energy level at each BS as a birth-death process, derive the energy utilization rate, and use hitting/stopping time analysis to prove that there exists a fundamental limit on \rho_k that cannot be surpassed by any uncoordinated strategy.Comment: submitted to IEEE Transactions on Wireless Communications, July 201

    Energy-Efficient Resource Assignment and Power Allocation in Heterogeneous Cloud Radio Access Networks

    Full text link
    Taking full advantages of both heterogeneous networks (HetNets) and cloud access radio access networks (CRANs), heterogeneous cloud radio access networks (H-CRANs) are presented to enhance both the spectral and energy efficiencies, where remote radio heads (RRHs) are mainly used to provide high data rates for users with high quality of service (QoS) requirements, while the high power node (HPN) is deployed to guarantee the seamless coverage and serve users with low QoS requirements. To mitigate the inter-tier interference and improve EE performances in H-CRANs, characterizing user association with RRH/HPN is considered in this paper, and the traditional soft fractional frequency reuse (S-FFR) is enhanced. Based on the RRH/HPN association constraint and the enhanced S-FFR, an energy-efficient optimization problem with the resource assignment and power allocation for the orthogonal frequency division multiple access (OFDMA) based H-CRANs is formulated as a non-convex objective function. To deal with the non-convexity, an equivalent convex feasibility problem is reformulated, and closedform expressions for the energy-efficient resource allocation solution to jointly allocate the resource block and transmit power are derived by the Lagrange dual decomposition method. Simulation results confirm that the H-CRAN architecture and the corresponding resource allocation solution can enhance the energy efficiency significantly.Comment: 13 pages, 7 figures, accepted by IEEE TV

    Outage Probability of Millimeter Wave Cellular Uplink with Truncated Power Control

    Full text link
    In this paper, using the stochastic geometry, we develop a tractable uplink modeling framework for the outage probability of both the single and multi-tier millimeter wave (mmWave) cellular networks. Each tier's mmWave base stations (BSs) are randomly located and they have particular spatial density, antenna gain, receiver sensitivity, blockage parameter and pathloss exponents. Our model takes account of the maximum power limitation and the per-user power control. More specifically, each user, which could be in line-of-sight (LOS) or non-LOS to its serving mmWave BS, controls its transmit power such that the received signal power at its serving BS is equal to a predefined threshold. Hence, a truncated channel inversion power control scheme is implemented for the uplink of mmWave cellular networks. We derive closed-form expressions for the signal-to-interference-and-noise-ratio (SINR) outage probability for the uplink of both the single and multi-tier mmWave cellular networks. Furthermore, we analyze the case with a dense network by utilizing the simplified model, where the LOS region is approximated as a fixed LOS disc. The results show that imposing a maximum power constraint on the user significantly affects the SINR outage probability in the uplink of mmWave cellular networks.Comment: 11 Figure

    Cost-Effective Cache Deployment in Mobile Heterogeneous Networks

    Full text link
    This paper investigates one of the fundamental issues in cache-enabled heterogeneous networks (HetNets): how many cache instances should be deployed at different base stations, in order to provide guaranteed service in a cost-effective manner. Specifically, we consider two-tier HetNets with hierarchical caching, where the most popular files are cached at small cell base stations (SBSs) while the less popular ones are cached at macro base stations (MBSs). For a given network cache deployment budget, the cache sizes for MBSs and SBSs are optimized to maximize network capacity while satisfying the file transmission rate requirements. As cache sizes of MBSs and SBSs affect the traffic load distribution, inter-tier traffic steering is also employed for load balancing. Based on stochastic geometry analysis, the optimal cache sizes for MBSs and SBSs are obtained, which are threshold-based with respect to cache budget in the networks constrained by SBS backhauls. Simulation results are provided to evaluate the proposed schemes and demonstrate the applications in cost-effective network deployment

    Flexible Design for α\alpha-Duplex Communications in Multi-Tier Cellular Networks

    Full text link
    Backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band full-duplex (FD) communication, FD base stations (BSs) should support half-duplex (HD) users' equipment (UEs) without sacrificing the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink transmissions. The results show that FD UEs are not necessarily required to harvest rate gains from FD BSs. In particular, the results show that adding FD UEs to FD BSs offers a maximum of 5%5\% rate gain over FD BSs and HD UEs case if multi-user diversity is exploited, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs' side. To this end, we shed light on practical scenarios where HD UEs operation with FD BSs outperforms the operation when both the BSs and UEs are FD and we find a closed form expression for the critical value of the self-interference attenuation power required for the FD UEs to outperform HD UEs.Comment: Submitted to Tco

    Downlink Power Control in Two-Tier Cellular Networks with Energy-Harvesting Small Cells as Stochastic Games

    Full text link
    Energy harvesting in cellular networks is an emerging technique to enhance the sustainability of power-constrained wireless devices. This paper considers the co-channel deployment of a macrocell overlaid with small cells. The small cell base stations (SBSs) harvest energy from environmental sources whereas the macrocell base station (MBS) uses conventional power supply. Given a stochastic energy arrival process for the SBSs, we derive a power control policy for the downlink transmission of both MBS and SBSs such that they can achieve their objectives (e.g., maintain the signal-to-interference-plus-noise ratio (SINR) at an acceptable level) on a given transmission channel. We consider a centralized energy harvesting mechanism for SBSs, i.e., there is a central energy storage (CES) where energy is harvested and then distributed to the SBSs. When the number of SBSs is small, the game between the CES and the MBS is modeled as a single-controller stochastic game and the equilibrium policies are obtained as a solution of a quadratic programming problem. However, when the number of SBSs tends to infinity (i.e., a highly dense network), the centralized scheme becomes infeasible, and therefore, we use a mean field stochastic game to obtain a distributed power control policy for each SBS. By solving a system of partial differential equations, we derive the power control policy of SBSs given the knowledge of mean field distribution and the available harvested energy levels in the batteries of the SBSs.Comment: IEEE Transactions on Communications, 201

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems
    • …
    corecore