6,618 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    Estudo da remodelagem reversa miocárdica através da análise proteómica do miocárdio e do líquido pericárdico

    Get PDF
    Valve replacement remains as the standard therapeutic option for aortic stenosis patients, aiming at abolishing pressure overload and triggering myocardial reverse remodeling. However, despite the instant hemodynamic benefit, not all patients show complete regression of myocardial hypertrophy, being at higher risk for adverse outcomes, such as heart failure. The current comprehension of the biological mechanisms underlying an incomplete reverse remodeling is far from complete. Furthermore, definitive prognostic tools and ancillary therapies to improve the outcome of the patients undergoing valve replacement are missing. To help abridge these gaps, a combined myocardial (phospho)proteomics and pericardial fluid proteomics approach was followed, taking advantage of human biopsies and pericardial fluid collected during surgery and whose origin anticipated a wealth of molecular information contained therein. From over 1800 and 750 proteins identified, respectively, in the myocardium and in the pericardial fluid of aortic stenosis patients, a total of 90 dysregulated proteins were detected. Gene annotation and pathway enrichment analyses, together with discriminant analysis, are compatible with a scenario of increased pro-hypertrophic gene expression and protein synthesis, defective ubiquitinproteasome system activity, proclivity to cell death (potentially fed by complement activity and other extrinsic factors, such as death receptor activators), acute-phase response, immune system activation and fibrosis. Specific validation of some targets through immunoblot techniques and correlation with clinical data pointed to complement C3 β chain, Muscle Ring Finger protein 1 (MuRF1) and the dual-specificity Tyr-phosphorylation regulated kinase 1A (DYRK1A) as potential markers of an incomplete response. In addition, kinase prediction from phosphoproteome data suggests that the modulation of casein kinase 2, the family of IκB kinases, glycogen synthase kinase 3 and DYRK1A may help improve the outcome of patients undergoing valve replacement. Particularly, functional studies with DYRK1A+/- cardiomyocytes show that this kinase may be an important target to treat cardiac dysfunction, provided that mutant cells presented a different response to stretch and reduced ability to develop force (active tension). This study opens many avenues in post-aortic valve replacement reverse remodeling research. In the future, gain-of-function and/or loss-of-function studies with isolated cardiomyocytes or with animal models of aortic bandingdebanding will help disclose the efficacy of targeting the surrogate therapeutic targets. Besides, clinical studies in larger cohorts will bring definitive proof of complement C3, MuRF1 and DYRK1A prognostic value.A substituição da válvula aórtica continua a ser a opção terapêutica de referência para doentes com estenose aórtica e visa a eliminação da sobrecarga de pressão, desencadeando a remodelagem reversa miocárdica. Contudo, apesar do benefício hemodinâmico imediato, nem todos os pacientes apresentam regressão completa da hipertrofia do miocárdio, ficando com maior risco de eventos adversos, como a insuficiência cardíaca. Atualmente, os mecanismos biológicos subjacentes a uma remodelagem reversa incompleta ainda não são claros. Além disso, não dispomos de ferramentas de prognóstico definitivos nem de terapias auxiliares para melhorar a condição dos pacientes indicados para substituição da válvula. Para ajudar a resolver estas lacunas, uma abordagem combinada de (fosfo)proteómica e proteómica para a caracterização, respetivamente, do miocárdio e do líquido pericárdico foi seguida, tomando partido de biópsias e líquidos pericárdicos recolhidos em ambiente cirúrgico. Das mais de 1800 e 750 proteínas identificadas, respetivamente, no miocárdio e no líquido pericárdico dos pacientes com estenose aórtica, um total de 90 proteínas desreguladas foram detetadas. As análises de anotação de genes, de enriquecimento de vias celulares e discriminativa corroboram um cenário de aumento da expressão de genes pro-hipertróficos e de síntese proteica, um sistema ubiquitina-proteassoma ineficiente, uma tendência para morte celular (potencialmente acelerada pela atividade do complemento e por outros fatores extrínsecos que ativam death receptors), com ativação da resposta de fase aguda e do sistema imune, assim como da fibrose. A validação de alguns alvos específicos através de immunoblot e correlação com dados clínicos apontou para a cadeia β do complemento C3, a Muscle Ring Finger protein 1 (MuRF1) e a dual-specificity Tyr-phosphoylation regulated kinase 1A (DYRK1A) como potenciais marcadores de uma resposta incompleta. Por outro lado, a predição de cinases a partir do fosfoproteoma, sugere que a modulação da caseína cinase 2, a família de cinases do IκB, a glicogénio sintase cinase 3 e da DYRK1A pode ajudar a melhorar a condição dos pacientes indicados para intervenção. Em particular, a avaliação funcional de cardiomiócitos DYRK1A+/- mostraram que esta cinase pode ser um alvo importante para tratar a disfunção cardíaca, uma vez que os miócitos mutantes responderam de forma diferente ao estiramento e mostraram uma menor capacidade para desenvolver força (tensão ativa). Este estudo levanta várias hipóteses na investigação da remodelagem reversa. No futuro, estudos de ganho e/ou perda de função realizados em cardiomiócitos isolados ou em modelos animais de banding-debanding da aorta ajudarão a testar a eficácia de modular os potenciais alvos terapêuticos encontrados. Além disso, estudos clínicos em coortes de maior dimensão trarão conclusões definitivas quanto ao valor de prognóstico do complemento C3, MuRF1 e DYRK1A.Programa Doutoral em Biomedicin

    Interference mitigation in LiFi networks

    Get PDF
    Due to the increasing demand for wireless data, the radio frequency (RF) spectrum has become a very limited resource. Alternative approaches are under investigation to support the future growth in data traffic and next-generation high-speed wireless communication systems. Techniques such as massive multiple-input multiple-output (MIMO), millimeter wave (mmWave) communications and light-fidelity (LiFi) are being explored. Among these technologies, LiFi is a novel bi-directional, high-speed and fully networked wireless communication technology. However, inter-cell interference (ICI) can significantly restrict the system performance of LiFi attocell networks. This thesis focuses on interference mitigation in LiFi attocell networks. The angle diversity receiver (ADR) is one solution to address the issue of ICI as well as frequency reuse in LiFi attocell networks. With the property of high concentration gain and narrow field of view (FOV), the ADR is very beneficial for interference mitigation. However, the optimum structure of the ADR has not been investigated. This motivates us to propose the optimum structures for the ADRs in order to fully exploit the performance gain. The impact of random device orientation and diffuse link signal propagation are taken into consideration. The performance comparison between the select best combining (SBC) and maximum ratio combining (MRC) is carried out under different noise levels. In addition, the double source (DS) system, where each LiFi access point (AP) consists of two sources transmitting the same information signals but with opposite polarity, is proven to outperform the single source (SS) system under certain conditions. Then, to overcome issues around ICI, random device orientation and link blockage, hybrid LiFi/WiFi networks (HLWNs) are considered. In this thesis, dynamic load balancing (LB) considering handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiple access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. Finally, due to the characteristic of high directivity and narrow beams, a vertical-cavity surface-emitting laser (VCSEL) array transmission system has been proposed to mitigate ICI. In order to support mobile users, two beam activation methods are proposed. The beam activation based on the corner-cube retroreflector (CCR) can achieve low power consumption and almost-zero delay, allowing real-time beam activation for high-speed users. The mechanism based on the omnidirectional transmitter (ODTx) is suitable for low-speed users and very robust to random orientation

    Modelling and Solving the Single-Airport Slot Allocation Problem

    Get PDF
    Currently, there are about 200 overly congested airports where airport capacity does not suffice to accommodate airline demand. These airports play a critical role in the global air transport system since they concern 40% of global passenger demand and act as a bottleneck for the entire air transport system. This imbalance between airport capacity and airline demand leads to excessive delays, as well as multi-billion economic, and huge environmental and societal costs. Concurrently, the implementation of airport capacity expansion projects requires time, space and is subject to significant resistance from local communities. As a short to medium-term response, Airport Slot Allocation (ASA) has been used as the main demand management mechanism. The main goal of this thesis is to improve ASA decision-making through the proposition of models and algorithms that provide enhanced ASA decision support. In doing so, this thesis is organised into three distinct chapters that shed light on the following questions (I–V), which remain untapped by the existing literature. In parentheses, we identify the chapters of this thesis that relate to each research question. I. How to improve the modelling of airline demand flexibility and the utility that each airline assigns to each available airport slot? (Chapters 2 and 4) II. How can one model the dynamic and endogenous adaptation of the airport’s landside and airside infrastructure to the characteristics of airline demand? (Chapter 2) III. How to consider operational delays in strategic ASA decision-making? (Chapter 3) IV. How to involve the pertinent stakeholders into the ASA decision-making process to select a commonly agreed schedule; and how can one reduce the inherent decision-complexity without compromising the quality and diversity of the schedules presented to the decision-makers? (Chapter 3) V. Given that the ASA process involves airlines (submitting requests for slots) and coordinators (assigning slots to requests based on a set of rules and priorities), how can one jointly consider the interactions between these two sides to improve ASA decision-making? (Chapter 4) With regards to research questions (I) and (II), the thesis proposes a Mixed Integer Programming (MIP) model that considers airlines’ timing flexibility (research question I) and constraints that enable the dynamic and endogenous allocation of the airport’s resources (research question II). The proposed modelling variant addresses several additional problem characteristics and policy rules, and considers multiple efficiency objectives, while integrating all constraints that may affect airport slot scheduling decisions, including the asynchronous use of the different airport resources (runway, aprons, passenger terminal) and the endogenous consideration of the capabilities of the airport’s infrastructure to adapt to the airline demand’s characteristics and the aircraft/flight type associated with each request. The proposed model is integrated into a two-stage solution approach that considers all primary and several secondary policy rules of ASA. New combinatorial results and valid tightening inequalities that facilitate the solution of the problem are proposed and implemented. An extension of the above MIP model that considers the trade-offs among schedule displacement, maximum displacement, and the number of displaced requests, is integrated into a multi-objective solution framework. The proposed framework holistically considers the preferences of all ASA stakeholder groups (research question IV) concerning multiple performance metrics and models the operational delays associated with each airport schedule (research question III). The delays of each schedule/solution are macroscopically estimated, and a subtractive clustering algorithm and a parameter tuning routine reduce the inherent decision complexity by pruning non-dominated solutions without compromising the representativeness of the alternatives offered to the decision-makers (research question IV). Following the determination of the representative set, the expected delay estimates of each schedule are further refined by considering the whole airfield’s operations, the landside, and the airside infrastructure. The representative schedules are ranked based on the preferences of all ASA stakeholder groups concerning each schedule’s displacement-related and operational-delay performance. Finally, in considering the interactions between airlines’ timing flexibility and utility, and the policy-based priorities assigned by the coordinator to each request (research question V), the thesis models the ASA problem as a two-sided matching game and provides guarantees on the stability of the proposed schedules. A Stable Airport Slot Allocation Model (SASAM) capitalises on the flexibility considerations introduced for addressing research question (I) through the exploitation of data submitted by the airlines during the ASA process and provides functions that proxy each request’s value considering both the airlines’ timing flexibility for each submitted request and the requests’ prioritisation by the coordinators when considering the policy rules defining the ASA process. The thesis argues on the compliance of the proposed functions with the primary regulatory requirements of the ASA process and demonstrates their applicability for different types of slot requests. SASAM guarantees stability through sets of inequalities that prune allocations blocking the formation of stable schedules. A multi-objective Deferred-Acceptance (DA) algorithm guaranteeing the stability of each generated schedule is developed. The algorithm can generate all stable non-dominated points by considering the trade-off between the spilled airline and passenger demand and maximum displacement. The work conducted in this thesis addresses several problem characteristics and sheds light on their implications for ASA decision-making, hence having the potential to improve ASA decision-making. Our findings suggest that the consideration of airlines’ timing flexibility (research question I) results in improved capacity utilisation and scheduling efficiency. The endogenous consideration of the ability of the airport’s infrastructure to adapt to the characteristics of airline demand (research question II) enables a more efficient representation of airport declared capacity that results in the scheduling of additional requests. The concurrent consideration of airlines’ timing flexibility and the endogenous adaptation of airport resources to airline demand achieves an improved alignment between the airport infrastructure and the characteristics of airline demand, ergo proposing schedules of improved efficiency. The modelling and evaluation of the peak operational delays associated with the different airport schedules (research question III) provides allows the study of the implications of strategic ASA decision-making for operations and quantifies the impact of the airport’s declared capacity on each schedule’s operational performance. In considering the preferences of the relevant ASA stakeholders (airlines, coordinators, airport, and air traffic authorities) concerning multiple operational and strategic ASA efficiency metrics (research question IV) the thesis assesses the impact of alternative preference considerations and indicates a commonly preferred schedule that balances the stakeholders’ preferences. The proposition of representative subsets of alternative schedules reduces decision-complexity without significantly compromising the quality of the alternatives offered to the decision-making process (research question IV). The modelling of the ASA as a two-sided matching game (research question V), results in stable schedules consisting of request-to-slot assignments that provide no incentive to airlines and coordinators to reject or alter the proposed timings. Furthermore, the proposition of stable schedules results in more intensive use of airport capacity, while simultaneously improving scheduling efficiency. The models and algorithms developed as part of this thesis are tested using airline requests and airport capacity data from coordinated airports. Computational results that are relevant to the context of the considered airport instances provide evidence on the potential improvements for the current ASA process and facilitate data-driven policy and decision-making. In particular, with regards to the alignment of airline demand with the capabilities of the airport’s infrastructure (questions I and II), computational results report improved slot allocation efficiency and airport capacity utilisation, which for the considered airport instance translate to improvements ranging between 5-24% for various schedule performance metrics. In reducing the difficulty associated with the assessment of multiple ASA solutions by the stakeholders (question IV), instance-specific results suggest reductions to the number of alternative schedules by 87%, while maintaining the quality of the solutions presented to the stakeholders above 70% (expressed in relation to the initially considered set of schedules). Meanwhile, computational results suggest that the concurrent consideration of ASA stakeholders’ preferences (research question IV) with regards to both operational (research question III) and strategic performance metrics leads to alternative airport slot scheduling solutions that inform on the trade-offs between the schedules’ operational and strategic performance and the stakeholders’ preferences. Concerning research question (V), the application of SASAM and the DA algorithm suggest improvements to the number of unaccommodated flights and passengers (13 and 40% improvements) at the expense of requests concerning fewer passengers and days of operations (increasing the number of rejected requests by 1.2% in relation to the total number of submitted requests). The research conducted in this thesis aids in the identification of limitations that should be addressed by future studies to further improve ASA decision-making. First, the thesis focuses on exact solution approaches that consider the landside and airside infrastructure of the airport and generate multiple schedules. The proposition of pre-processing techniques that identify the bottleneck of the airport’s capacity, i.e., landside and/or airside, can be used to reduce the size of the proposed formulations and improve the required computational times. Meanwhile, the development of multi-objective heuristic algorithms that consider several problem characteristics and generate multiple efficient schedules in reasonable computational times, could extend the capabilities of the models propositioned in this thesis and provide decision support for some of the world’s most congested airports. Furthermore, the thesis models and evaluates the operational implications of strategic airport slot scheduling decisions. The explicit consideration of operational delays as an objective in ASA optimisation models and algorithms is an issue that merits investigation since it may further improve the operational performance of the generated schedules. In accordance with current practice, the models proposed in this work have considered deterministic capacity parameters. Perhaps, future research could propose formulations that consider stochastic representations of airport declared capacity and improve strategic ASA decision-making through the anticipation of operational uncertainty and weather-induced capacity reductions. Finally, in modelling airlines’ utility for each submitted request and available time slot the thesis proposes time-dependent functions that utilise available data to approximate airlines’ scheduling preferences. Future studies wishing to improve the accuracy of the proposed functions could utilise commercial data sources that provide route-specific information; or in cases that such data is unavailable, employ data mining and machine learning methodologies to extract airlines’ time-dependent utility and preferences

    Optimising acoustic cavitation for industrial application

    Get PDF
    The ultrasonic horn is one of the most commonly used acoustic devices in laboratories and industry. For its efficient application to cavitation mediated process, the cavitation generated at its tip as a function of its tip-vibration amplitudes still needed to be studied in detail. High-speed imaging and acoustic detection are used to investigate the cavitation generated at the tip of an ultrasonic horn, operating at a fundamental frequency, f0, of 20 kHz. Tip-vibration amplitudes are sampled at fine increments across the range of input powers available. The primary bubble cluster under the tip is found to undergo subharmonic periodic collapse, with concurrent shock wave emission, at frequencies of f0/m, with m increasing through integer values with increasing tip-vibration amplitude. The contribution of periodic shock waves to the noise spectra of the acoustic emissions is confirmed. Transitional input powers for which the value of m is indistinct, and shock wave emission irregular and inconsistent, are identified through Vrms of the acoustic detector output. For cavitation applications mediated by bubble collapse, sonications at transitional powers may lead to inefficient processing. The ultrasonic horn is also deployed to investigate the role of shock waves in the fragmentation of intermetallic crystals, nominally for ultrasonic treatment of Aluminium melt, and in a novel two-horn configuration for potential cavitation enhancement effects. An experiment investigating nitrogen fixation via cavitation generated by focused ultrasound exposures is also described. Vrms from the acoustic detector is again used to quantify the acoustic emissions for comparison to the sonochemical nitrite yield and for optimisation of sonication protocols at constant input energy. The findings revealed that the acoustic cavitation could be enhanced at constant input energy through optimisation of the pulse duration and pulse interval. Anomalous results may be due to inadequate assessment for the nitrate generated. The studies presented in this thesis have illustrated means of improving the cavitation efficiency of the used acoustic devices, which may be important to some selected industrial processes

    Hunting Wildlife in the Tropics and Subtropics

    Get PDF
    The hunting of wild animals for their meat has been a crucial activity in the evolution of humans. It continues to be an essential source of food and a generator of income for millions of Indigenous and rural communities worldwide. Conservationists rightly fear that excessive hunting of many animal species will cause their demise, as has already happened throughout the Anthropocene. Many species of large mammals and birds have been decimated or annihilated due to overhunting by humans. If such pressures continue, many other species will meet the same fate. Equally, if the use of wildlife resources is to continue by those who depend on it, sustainable practices must be implemented. These communities need to remain or become custodians of the wildlife resources within their lands, for their own well-being as well as for biodiversity in general. This title is also available via Open Access on Cambridge Core
    • …
    corecore