192 research outputs found

    A Spectrum Efficient Self-Admission Framework for Coexisting IEEE 802.15.4 Networks under Heterogeneous Traffics

    Get PDF
    Due to the limited bandwidth resource and the interference among networks, it is challengeable to coordinate the bandwidth resource of multiple IEEE 802.15.4-based wireless personal area networks (WPANs) with heterogeneous traffics, especially in a distributed mode. In this paper, to handle this problem, we first propose a renewal carrier sense multiple access (CSMA)-based self-admission access mechanism for coexisting WPANs in order to maximize the frequency resource utilization and satisfy the diverse rate requirements of heterogeneous traffics. Secondly, we propose the time-space-hard core point process (TS-HCPP) to abstract the renewal CSMA-based self-admission access process for the IEEE 802.15.4 network with multi-channels. TS-HCPP considers the correlation of time and space, and appropriately judges the strong interference between coexisting WPANs, which can solve the density underestimation problems of traditional HCPP. Finally, relying on the TS-HCPP, we obtain the optimum combination of access parameters, which meets the minimum service rate requirements for heterogeneous traffics and maximizes the frequency resource utilization. The simulation results show that the density of coexisting WPANs evaluated by the TS-HCPP matches the experimental results, and an improvement in spectral efficiency of coexisting WPANs can be achieved in our proposed self-admission framework

    A two-stage game theoretical approach for interference mitigation in Body-to-Body Networks

    Get PDF
    International audienceIn this paper, we identify and exploit opportunities for cooperation between a group of mobile Wireless Body Area Networks (WBANs), forming a Body-to-Body Network (BBN), through inter-body interference detection and subsequent mitigation. Thus, we consider a dynamic system composed of several BBNs and we analyze the joint mutual and cross-technology interference problem due to the utilization of a limited number of channels by different transmission technologies (i.e., ZigBee and WiFi) sharing the same radio spectrum. To this end, we propose a game theoretical approach to address the problem of Socially-aware Interference Mitigation (SIM) in BBNs, where WBANs are " social " and interact with each other. Our approach considers a two-stage channel allocation scheme: a BBN-stage for inter-WBANs' communications and a WBAN-stage for intra-WBAN communications. We demonstrate that the proposed BBN-stage and WBAN-stage games admit exact potential functions, and we develop a Best-Response (BR-SIM) algorithm that converges to Nash equilibrium points. A second algorithm, named Sub-Optimal Randomized Trials (SORT-SIM), is then proposed and compared to BR-SIM in terms of efficiency and computation time. We further compare the BR-SIM and SORT-SIM algorithms to two power control algorithms in terms of signal-to-interference ratio and aggregate interference, and show that they outperform the power control schemes in several cases. Numerical results, obtained in several realistic mobile scenarios, show that the proposed schemes are indeed efficient in optimizing the channel allocation in medium-to-large-scale BBNs

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)

    SPECTRUM SENSING TECHNIQUES IN WIRELESS COMMUNICATION NETWORKS

    Get PDF

    Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network

    Get PDF
    The cognitive radio (CR) is evolved as the promising technology to alleviate the spectrum scarcity issues by allowing the secondary users (SUs) to use the licensed band in an opportunistic manner. Various challenges need to be addressed before the successful deployment of CR technology. This thesis work presents intelligent resource allocation techniques for improving energy efficiency (EE) of low battery powered CR nodes where resources refer to certain important parameters that directly or indirectly affect EE. As far as the primary user (PU) is concerned, the SUs are allowed to transmit on the licensed band until their transmission power would not cause any interference to the primary network. Also, the SUs must use the licensed band efficiently during the PU’s absence. Therefore, the two key factors such as protection to the primary network and throughput above the threshold are important from the PU’s and SUs’ perspective, respectively. In deployment of CR, malicious users may be more active to prevent the CR users from accessing the spectrum or cause unnecessary interference to the both primary and secondary transmission. Considering these aspects, this thesis focuses on developing novel approaches for energy-efficient resource allocation under the constraints of interference to the PR, minimum achievable data rate and maximum transmission power by optimizing the resource parameters such as sensing time and the secondary transmission power with suitably selecting SUs. Two different domains considered in this thesis are the soft decision fusion (SDF)-based cooperative spectrum sensing CR network (CRN) models without and with the primary user emulation attack (PUEA). An efficient iterative algorithm called iterative Dinkelbach method (IDM) is proposed to maximize EE with suitable SUs in the absence of the attacker. In the proposed approaches, different constraints are evaluated considering the negative impact of the PUE attacker on the secondary transmission while maximizing EE with the PUE attacker. The optimization problem associated with the non-convex constraints is solved by our proposed iterative resource allocation algorithms (novel iterative resource allocation (NIRA) and novel adaptive resource allocation (NARA)) with suitable selection of SUs for jointly optimizing the sensing time and power allocation. In the CR enhanced vehicular ad hoc network (CR-VANET), the time varying channel responses with the vehicular movement are considered without and with the attacker. In the absence of the PUE attacker, an interference-aware power allocation scheme based on normalized least mean square (NLMS) algorithm is proposed to maximize EE considering the dynamic constraints. In the presence of the attacker, the optimization problem associated with the non-convex and time-varying constraints is solved by an efficient approach based on genetic algorithm (GA). Further, an investigation is attempted to apply the CR technology in industrial, scientific and medical (ISM) band through spectrum occupancy prediction, sub-band selection and optimal power allocation to the CR users using the real time indoor measurement data. Efficacies of the proposed approaches are verified through extensive simulation studies in the MATLAB environment and by comparing with the existing literature. Further, the impacts of different network parameters on the system performance are analyzed in detail. The proposed approaches will be highly helpful in designing energy-efficient CRN model with low complexity for future CR deployment
    corecore