2,468 research outputs found

    PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers

    Get PDF
    Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)

    TinyVers: A Tiny Versatile System-on-chip with State-Retentive eMRAM for ML Inference at the Extreme Edge

    Full text link
    Extreme edge devices or Internet-of-thing nodes require both ultra-low power always-on processing as well as the ability to do on-demand sampling and processing. Moreover, support for IoT applications like voice recognition, machine monitoring, etc., requires the ability to execute a wide range of ML workloads. This brings challenges in hardware design to build flexible processors operating in ultra-low power regime. This paper presents TinyVers, a tiny versatile ultra-low power ML system-on-chip to enable enhanced intelligence at the Extreme Edge. TinyVers exploits dataflow reconfiguration to enable multi-modal support and aggressive on-chip power management for duty-cycling to enable smart sensing applications. The SoC combines a RISC-V host processor, a 17 TOPS/W dataflow reconfigurable ML accelerator, a 1.7 μ\muW deep sleep wake-up controller, and an eMRAM for boot code and ML parameter retention. The SoC can perform up to 17.6 GOPS while achieving a power consumption range from 1.7 μ\muW-20 mW. Multiple ML workloads aimed for diverse applications are mapped on the SoC to showcase its flexibility and efficiency. All the models achieve 1-2 TOPS/W of energy efficiency with power consumption below 230 μ\muW in continuous operation. In a duty-cycling use case for machine monitoring, this power is reduced to below 10 μ\muW.Comment: Accepted in IEEE Journal of Solid-State Circuit

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators
    corecore