1,046 research outputs found

    Energy dispatching of an isolated diesel-battery hybrid power system

    Get PDF
    Published Conference ProceedingsIn this paper, two control strategies involving “continuous” and “ON/OFF” operation of the diesel generator in the battery-integrated hybrid system are developed, implemented and compared. The main purpose of these modeled controlled strategies is to minimize the diesel generator operation cost in standalone electricity generation processes. The simulations have been performed using “fmincon” for the continuous operation and “intlinprog” for the ON/OFF operation strategy implemented in Matlab. A rural household and a base transceiver station have been used as case studies; and the daily operation cost obtained are compared to the scenario where the diesel generator is used alone to supply the same load demand. Sensitivity analyses have been conducted on the battery control settings as key parameters to find how changes in these parameters do impact the daily operation cost of the hybrid system. The results show that using the developed optimal energy dispatch models, significant fuel saving can be achieved compared to the case where the diesel is used alone to supply the same load requirements

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya

    Get PDF
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector

    A novel stochastic method to dispatch microgrids using Monte Carlo scenarios

    Get PDF
    Stochastic operating strategies have proven to achieve cheaper resource scheduling both in large power systems and microgrids, but suffer from high computational requirements with respect to traditional deterministic approaches; therefore, using stochastic formulations in advanced infra-daily operating strategies is quite challenging, especially in isolated energy systems with limited computational assets. This paper proposes a dispatching methodology for microgrids based on a novel two-stage formulation that decomposes the stochastic problem into several deterministic subproblems, whose solutions are afterwards aggregated by the aggregator using simulations and a cost-based rule. In the first stage, every subproblem is solved, then each optimal dispatching is simulated in the second stage to evaluate the corresponding expected operating cost, which is used by the aggregator to select the final optimal scheduling. When compared to traditional methods for a rural microgrid in Uganda, the proposed approach not only achieves interesting savings in operational costs, up to 5%, but also sharply reduces the computational requirements, even more than 5–100 times with respect to traditional stochastic approaches. The paper also proposes a review and first classification of this kind of methodologies, to highlight the novelties of the approach

    Renewable Energy Microgrid Design for Shared Loads

    Get PDF
    Renewable energy resource (RER) energy systems are becoming more cost-effective and this work investigates the effect of shared load on the optimal sizing of a renewable energy resource (RER) microgrid. The RER system consists of solar panels, wind turbines, battery storage, and a backup diesel generator, and it is isolated from conventional grid power. The building contains a restaurant and 12 residential apartments. Historical meter readings and restaurant modeling represent the apartments and restaurant, respectively. Weather data determines hourly RER power, and a dispatching algorithm predicts power flows between system elements. A genetic algorithm approach minimizes total annual cost over the number of PV and turbines, battery capacity, and generator size, with a constraint on the renewable penetration. Results indicate that load-mixing serves to reduce cost, and the reduction is largest if the diesel backup is removed from the system. This cost is optimized with a combination of particle swarm optimization with genetic-algorithm approach minimizes total annual cost over the number of solar panels and micro-turbines, battery capacity, and diesel generator size, with a constraint on the renewable penetration. Results indicate that load-mixing serves to reduce cost, and the reduction is largest if the diesel backup is removed from the system

    Power Management of Remote Microgrids Considering Battery Lifetime

    Get PDF
    Currently, 20% (1.3 billion) of the world’s population still lacks access to electricity and many live in remote areas where connection to the grid is not economical or practical. Remote microgrids could be the solution to the problem because they are designed to provide power for small communities within clearly defined electrical boundaries. Reducing the cost of electricity for remote microgrids can help to increase access to electricity for populations in remote areas and developing countries. The integration of renewable energy and batteries in diesel based microgrids has shown to be effective in reducing fuel consumption. However, the operational cost remains high due to the low lifetime of batteries, which are heavily used to improve the system\u27s efficiency. In microgrid operation, a battery can act as a source to augment the generator or a load to ensure full load operation. In addition, a battery increases the utilization of PV by storing extra energy. However, the battery has a limited energy throughput. Therefore, it is required to provide a balance between fuel consumption and battery lifetime throughput in order to lower the cost of operation. This work presents a two-layer power management system for remote microgrids. The first layer is day ahead scheduling, where power set points of dispatchable resources were calculated. The second layer is real-time dispatch, where schedule set points from the first layer are accepted and resources are dispatched accordingly. A novel scheduling algorithm is proposed for a dispatch layer, which considers the battery lifetime in optimization and is expected to reduce the operational cost of the microgrid. This method is based on a goal programming approach which has the fuel and the battery wear cost as two objectives to achieve. The effectiveness of this method was evaluated through a simulation study of a PV-diesel hybrid microgrid using deterministic and stochastic approach of optimization

    Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids

    Get PDF
    The propagation of hybrid power systems (solar–diesel–battery) has led to the development of new energy management system (EMS) strategies for the effective management of all power generation technologies related to hybrid microgrids. This paper proposes two novel EMS strategies for isolated hybrid microgrids, highlighting their strengths and weaknesses using simulations. The proposed strategies are different from the EMS strategies reported thus far in the literature because the former enable the real-time operation of the hybrid microgrid, which always guarantees the correct operation of a microgrid. The priority EMS strategy works by assigning a priority order, while the optimal EMS strategy is based on an optimization criterion, which is set as the minimum marginal cost in this case. The results have been obtained using MATLAB/Simulink to verify and compare the effectiveness of the proposed strategies, through a dynamic microgrid model to simulate the conditions of a real-time operation. The differences in the EMS strategies as well as their individual strengths and weaknesses, are presented and discussed. The results show that the proposed EMS strategies can manage the system operation under different scenarios and help power system operator obtain the optimal operation schemes of the microgrid.This work was supported by the Autonomous Community of Madrid under the PROMINT-CM project (S2018/EMT-4366)

    Optimal design of isolated mini-grids with deterministic methods: matching predictive operating strategies with low computational requirements

    Get PDF
    The lack of electricity access is increasingly concentrated in rural areas of developing countries, in which mini-grids are often a suitable solution; however, given the high risks, it is crucial to minimize costs. This paper aims at analyzing existing methodologies for the optimal design of mini-grids combined with different operating strategies. Typical system operations, like the load-following (LFS) and cycle charging (CCS) strategies, are compared with the more demanding predictive strategies based on Mixed-Integer Linear Programming (MILP). The problem is formulated and solved with Particle Swarm Optimization (PSO), so to simulate traditional and predictive operating strategies. Two reformulations based on the proposed Search Space Update are also detailed and compared with the so-called one-shot MILP model, which is able to con-jointly optimize both the design and the operation of the system, in order to reduce computational requirements with the predictive strategy. The results, tailored with data from a rural mini-grid in Kenya, highlight that heuristic methodologies can perform better than the traditional MILP approach, both in terms of optimality and computational time, especially when advanced operating strategies are considered. Conventional operating strategies (LFS or CCS) appear to be sub-optimal, but require very little computational requirements, which makes them suitable for preliminary designs
    • …
    corecore