1,982 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    Low Complexity Energy-Efficient Collaborative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Clustering approach is considered a management technology that arranged the distributed cognitive radio users into logical groups to improve the sensing performance of the network. A lot of works in this area showed that cluster-based spectrum sensing (CBSS) technique efficiently tackled the trade-off between performance and overhead issue. By employing the tree structure of the cluster, a multilevel hierarchical cluster-based spectrum sensing (MH-CBSS) algorithm was proposed to compromise between the gained performance and incurred overhead. However, the MH-CBSS iterative algorithm incurs high computational requirements. In this thesis, an energy-efficient low computational hierarchical cluster-based algorithm is proposed which reduces the incurred computational burden. This is achieved by predetermining the number of cognitive radios (CRs) in the cluster, which provides an advantage of reducing the number of iterations of the MH-CBSS algorithm. Furthermore, for a comprehensive study, the modified algorithm is investigated over both Rayleigh and Nakagami fading channels. Simulation results show that the detection performance of the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh and Nakagami fading channels. In addition, a conventional energy detection algorithm is a fixed threshold based algorithm. Therefore, the threshold should be selected properly since it significantly affects the sensing performance of energy detector. For this reason, an energy-efficient hierarchical cluster-based cooperative spectrum sensing algorithm with an adaptive threshold is proposed which enables the CR dynamically adapts its threshold to achieve the minimum total cluster error. Besides, the optimal threshold level for minimizing the overall cluster detection error rate is numerically determined. The detection performance of the proposed algorithm is presented and evaluated through simulation results

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Enhancing Spectrum Utilization in Dynamic Cognitive Radio Systems

    Get PDF
    Cognitive radio (CR) is regarded as a viable solution to enabling flexible use of the frequency spectrum in future generations of wireless systems by allowing unlicensed secondary users (SU) to access licensed spectrum under the specific condition that no harmful interference be caused to the licensed primary users (PU) of the spectrum. In practical scenarios, the knowledge of PU activity is unknown to CRs and radio environments are mostly imperfect due to various issues such as noise uncertainty and multipath fadings. Therefore, important functionalities of CR systems are to efficiently detect availability of radio spectrum as well as to avoid generating interference to PUs, by missing detection of active PU signals. Typically, CR systems are expected to be equipped with smart capabilities which include sensing, adapting, learning, and awareness concerned with spectrum opportunity access, radio environments, and wireless communications operations, such that SUs equipped with CRs can efficiently utilize spectrum opportunities with high quality of services. Most existing researches working on CR focus on improving spectrum sensing through performance measures such as the probabilities of PU detection and false alarm but none of them explicitly studies the improvement in the actual spectrum utilization. Motivated by this perspective, the main objective of the dissertation is to explore new techniques on the physical layer of dynamic CR systems, that can enhance actual utilization of spectrum opportunities and awareness on the performance of CR systems. Specifically, this dissertation investigates utilization of spectrum opportunities in dynamic scenarios, where a licensed radio spectrum is available for limited time and also analyzes how it is affected by various parameters. The dissertation proposes three new methods for adaptive spectrum sensing which improve dynamic utilization of idle radio spectrum as well as the detection of active PUs in comparison to the conventional method with fixed spectrum sensing size. Moreover, this dissertation presents a new approach for optimizing cooperative spectrum sensing performance and also proposes the use of hidden Markov models (HMMs) to enabling performance awareness for local and cooperative spectrum sensing schemes, leading to improved spectrum utilization. All the contributions are illustrated with numerical results obtained from extensive simulations which confirm their effectiveness for practical applications
    • …
    corecore