4,313 research outputs found

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Identification of Smart Jammers: Learning based Approaches Using Wavelet Representation

    Full text link
    Smart jammer nodes can disrupt communication between a transmitter and a receiver in a wireless network, and they leave traces that are undetectable to classical jammer identification techniques, hidden in the time-frequency plane. These traces cannot be effectively identified through the use of the classical Fourier transform based time-frequency transformation (TFT) techniques with a fixed resolution. Inspired by the adaptive resolution property provided by the wavelet transforms, in this paper, we propose a jammer identification methodology that includes a pre-processing step to obtain a multi-resolution image, followed by the use of a classifier. Support vector machine (SVM) and deep convolutional neural network (DCNN) architectures are investigated as classifiers to automatically extract the features of the transformed signals and to classify them. Three different jamming attacks are considered, the barrage jamming that targets the complete transmission bandwidth, the synchronization signal jamming attack that targets synchronization signals and the reference signal jamming attack that targets the reference signals in an LTE downlink transmission scenario. The performance of the proposed approach is compared with the classical Fourier transform based TFT techniques, demonstrating the efficacy of the proposed approach in the presence of smart jammers

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Machine Learning-Based Delay-Aware UAV Detection and Operation Mode Identification over Encrypted Wi-Fi Traffic

    Full text link
    The consumer UAV (unmanned aerial vehicle) market has grown significantly over the past few years. Despite its huge potential in spurring economic growth by supporting various applications, the increase of consumer UAVs poses potential risks to public security and personal privacy. To minimize the risks, efficiently detecting and identifying invading UAVs is in urgent need for both invasion detection and forensics purposes. Given the fact that consumer UAVs are usually used in a civilian environment, existing physical detection methods (such as radar, vision, and sound) may become ineffective in many scenarios. Aiming to complement the existing physical detection mechanisms, we propose a machine learning-based framework for fast UAV identification over encrypted Wi-Fi traffic. It is motivated by the observation that many consumer UAVs use Wi-Fi links for control and video streaming. The proposed framework extracts features derived only from packet size and inter-arrival time of encrypted Wi-Fi traffic, and can efficiently detect UAVs and identify their operation modes. In order to reduce the online identification time, our framework adopts a re-weighted â„“1\ell_1-norm regularization, which considers the number of samples and computation cost of different features. This framework jointly optimizes feature selection and prediction performance in a unified objective function. To tackle the packet inter-arrival time uncertainty when optimizing the trade-off between the detection accuracy and delay, we utilize Maximum Likelihood Estimation (MLE) method to estimate the packet inter-arrival time. We collect a large number of real-world Wi-Fi data traffic of eight types of consumer UAVs and conduct extensive evaluation on the performance of our proposed method

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Security and Privacy Challenges in Cognitive Wireless Sensor Networks

    Full text link
    Wireless sensor networks (WSNs) have attracted a lot of interest in the research community due to their potential applicability in a wide range of real-world practical applications. However, due to the distributed nature and their deployments in critical applications without human interventions and sensitivity and criticality of data communicated, these networks are vulnerable to numerous security and privacy threats that can adversely affect their performance. These issues become even more critical in cognitive wireless sensor networks (CWSNs) in which the sensor nodes have the capabilities of changing their transmission and reception parameters according to the radio environment under which they operate in order to achieve reliable and efficient communication and optimum utilization of the network resources. This chapter presents a comprehensive discussion on the security and privacy issues in CWSNs by identifying various security threats in these networks and various defense mechanisms to counter these vulnerabilities. Various types of attacks on CWSNs are categorized under different classes based on their natures and targets, and corresponding to each attack class, appropriate security mechanisms are also discussed. Some critical research issues on security and privacy in CWSNs are also identified.Comment: 36 pages, 4 figures, 2 tables. The book chapter is accepted for publication in 201

    The Future is Unlicensed: Coexistence in the Unlicensed Spectrum for 5G

    Full text link
    5G has to fulfill the requirements of ultra-dense, scalable, and customizable networks such as IoT while increasing spectrum and energy efficiency. Given the diversity of envisaged applications and scenarios, one crucial property for 5G New Radio (NR) is flexibility: flexible UL/DL allocation, bandwidths, or scalable transmission time interval, and most importantly operation at different frequency bands. In particular, 5G should exploit the spectral opportunities in the unlicensed spectrum for expanding network capacity when and where needed. However, unlicensed bands pose the challenge of "coexisting networks", which mostly lack the means of communication for negotiation and coordination. This deficiency is further exacerbated by the heterogeneity, massive connectivity, and ubiquity of IoT systems and applications. Therefore, 5G needs to provide mechanisms to coexist and even converge in the unlicensed bands. In that regard, WiFi, as the most prominent wireless technology in the unlicensed bands, is both a key enabler for boosting 5G capacity and competitor of 5G cellular networks for the shared unlicensed spectrum. In this work, we describe spectrum sharing in 5G and present key coexistence solutions, mostly in the context of WiFi. We also highlight the role of machine learning which is envisaged to be critical for reaching coexistence and convergence goals by providing the necessary intelligence and adaptation mechanisms.Comment: 7 pages, 4 figure

    A Blind Zone Alert System based on Intra-vehicular Wireless Sensor Networks

    Full text link
    Due to the increasing number of sensors deployed in modern vehicles, Intra-Vehicular Wireless Sensor Networks (IVWSNs) have recently received a lot of attention in the automotive industry as they can reduce the amount of wiring harness inside a vehicle. By removing the wires, car manufacturers can reduce the weight of a vehicle and improve engine performance, fuel economy, and reliability. In addition to these direct benefits, an IVWSN is a versatile platform that can support other vehicular applications as well. An example application, known as a Side Blind Zone Alert (SBZA) system, which monitors the blind zone of the vehicle and alerts the driver in a timely manner to prevent collisions, is discussed in this paper. The performance of the IVWSN-based SBZA system is evaluated via real experiments conducted on two test vehicles. Our results show that the proposed system can achieve approximately 95% to 99% detection rate with less than 15% false alarm rate. Compared to commercial systems using radars or cameras, the main benefit of the IVWSN-based SBZA is substantially lower cost.Comment: 9 pages, 8 figures, 1 table, IEEE Transactions on Industrial Informatics, 201

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems

    Lightweight Hierarchical Model for HWSNET

    Full text link
    Heterogeneous wireless sensor networks (HWSNET) are more suitable for real life applications as compared to the homogeneous counterpart. Security of HWSNET becomes a very important issue with the rapid development of HWSNET. Intrusion detection system is one of the major and efficient defensive methods against attacks in HWSNET. Because of different constraints of sensor networks, security solutions have to be designed with limited usage of computation and resources. A particularly devastating attack is the sleep deprivation attack. Here a malicious node forces legitimate nodes to waste their energy by resisting the sensor nodes from going into low power sleep mode. The target of this attack is to maximize the power consumption of the affected node, thereby decreasing its battery life. Existing works on sleep deprivation attack have mainly focused on mitigation using MAC based protocols, such as S-MAC (sensor MAC), T-MAC (timeout MAC), B-MAC (Berkley MAC), G-MAC (gateway MAC). In this article, a brief review of some of the recent intrusion detection systems in wireless sensor network environment is presented. Finally, a framework of cluster based layered countermeasure for Insomnia Detection has been proposed for heterogeneous wireless sensor network (HWSNET) to efficiently detect sleep deprivation attack. Simulation results on MATLAB exhibit the effectiveness of the proposed model.Comment: 14 pages, 7 figures, AIRCC Journa
    • …
    corecore