148,900 research outputs found

    Effect of event-based sensing on IoT node power efficiency. Case study: air quality monitoring in smart cities

    Get PDF
    The predicted growth of urban populations has prompted researchers and administrations to improve services provided to citizens. At the heart of these services are wireless networks of multiple different sensors supported by the Internet of Things. The main purpose of these networks is to provide sufficient information to achieve more intelligent transport, energy supplies, social services, public environments (indoor and outdoor) and security, etc. Two major technological advances would improve such networks in Smart Cities: efficient communication between nodes and a reduction in each node's power consumption. The present paper analyses how event-based sampling techniques can address both challenges. We describe the fundamentals of the triggering mechanisms that characterise Send-on-Delta, Send-on-Area, Send-on-Energy and Send-on-Prediction techniques to restrict the number of transmissions between the sensor node and the supervision or monitoring node without degrading tracking of the sensed variable. At the same time, these aperiodic techniques reduce consumption by sensor node electronic devices. In order to quantify the energy savings, we evaluate the increase achieved in the average lifetime of sensor node batteries. The data provided by Smart City tools in the city of Santander (Spain) were selected to conduct a case study of the main pollutants that determine city air quality: SO2 , NO2 , O3 and PM10 . We conclude that event-based sensing techniques can yield up to 50% savings in sensor node consumption compared to classical periodic sensing techniques

    Analysis and Comparison of SMAC and TMAC Protocol for Energy Efficient Dynamic Topology in Sensor Network

    Get PDF
    In the era of wireless communication, wireless sensor is one of the best technologies we are witnessing. In case of environmental monitoring, tactical systems and different tracking applications, wireless sensors are being used. Here, the corresponding nodes operate on incomplete power and thus the energy comes into play to operate these entire networks. Managing the energy and its utilization is vital for TCP/IP protocol suite which is MAC layer’s application. Thus keeping in mind the above challenges, the techniques used are increasing the sleep duration, over hearing and ideal listening, collision of packet and eliminating hidden terminal problem. This paper is oriented towards the comparison of energy consumption by SMAC and TMAC protocol. The characteristics of TMAC and SMAC protocols were explored keeping real transmission conditions intact, like variable transmission bit rate, dynamic topology and mobile sensors in network. TMAC and SMAC protocols are contention based protocols and are designed to keep the energy consumption low using duty cycle

    Energy efficient data collection and dissemination protocols in self-organised wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are used for event detection and data collection in a plethora of environmental monitoring applications. However a critical factor limits the extension of WSNs into new application areas: energy constraints. This thesis develops self-organising energy efficient data collection and dissemination protocols in order to support WSNs in event detection and data collection and thus extend the use of sensor-based networks to many new application areas. Firstly, a Dual Prediction and Probabilistic Scheduler (DPPS) is developed. DPPS uses a Dual Prediction Scheme combining compression and load balancing techniques in order to manage sensor usage more efficiently. DPPS was tested and evaluated through computer simulations and empirical experiments. Results showed that DPPS reduces energy consumption in WSNs by up to 35% while simultaneously maintaining data quality and satisfying a user specified accuracy constraint. Secondly, an Adaptive Detection-driven Ad hoc Medium Access Control (ADAMAC) protocol is developed. ADAMAC limits the Data Forwarding Interruption problem which causes increased end-to-end delay and energy consumption in multi-hop sensor networks. ADAMAC uses early warning alarms to dynamically adapt the sensing intervals and communication periods of a sensor according to the likelihood of any new events occurring. Results demonstrated that compared to previous protocols such as SMAC, ADAMAC dramatically reduces end-to-end delay while still limiting energy consumption during data collection and dissemination. The protocols developed in this thesis, DPPS and ADAMAC, effectively alleviate the energy constraints associated with WSNs and will support the extension of sensorbased networks to many more application areas than had hitherto been readily possible

    Partitioning approaches for large-scale water transport networks

    Get PDF
    The final publication is available at link.springer.comThis book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: - decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow andpressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs; - decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection anddiagnosis techniques and using information from hundreds of flow,pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators; - consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns,providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.Peer ReviewedPostprint (author's final draft

    Non-centralized predictive control for drinking-water supply systems

    Get PDF
    The final publication is available at link.springer.comThis book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: - decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow andpressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs; - decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection anddiagnosis techniques and using information from hundreds of flow,pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators; - consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns,providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.Peer ReviewedPostprint (author's final draft

    Data-driven evolutionary-game-based control for drinking-water networks

    Get PDF
    The final publication is available at link.springer.comThis book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: - decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow andpressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs; - decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection anddiagnosis techniques and using information from hundreds of flow,pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators; - consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns,providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.Peer ReviewedPostprint (author's final draft
    • …
    corecore