46,660 research outputs found

    Energy Consumption Awareness for Resource-Constrained Devices: Extension to FPGA

    Get PDF
    The devices running embedded applications tend to be battery-powered, and the energy efficiency of their operations is an important enabler for the wide adoption of the Internet-of-Things. Optimization of energy usage depends on modelling power consumption. A model-based simulation must consider parameters that depend on the device used, the operating system, and the distributed application under study. A realistic simulation thus depends on knowledge regarding how and when devices consume energy. This paper presents an approach to direct measurement of energy consumed in the different execution states of the device. We present the architecture and the measurement process that were implemented. We provide a reference architecture, whose constituent parts can be implemented in different manners, e.g. the processing unit of the device can be the chip on a mote, or an Field-Programmable Gate Array (FPGA) implementation. Details are given regarding the setup of the experimental tests, and a discussion of the results hints at which architecture is the best for each application under study. The presented methodology can be extended easily to new architectures and applications, to streamline the process of building realistic models of power consumption.info:eu-repo/semantics/publishedVersio

    Performance Analysis of Denial-of-Sleep Attack-Prone MAC Protocols in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. On the other hand, the presence as well as the absence of security features implemented in resource constrained sensors can have negative effects on their energy consumption. Indeed, the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection could give room for energy-drain attacks such as denial-of-sleep attacks which has a higher negative impact on the life span (availability) of the sensors than the presence of security techniques. This paper focuses on denial-of-sleep attacks by simulating three Media Access Control (MAC) protocols – Sensor-MAC, Timeout-MAC and TunableMAC – under different network sizes. We evaluate, compare, and analyse the received signal strength and the link quality indicators for each of these protocols. The results of our simulation provide insight into how these parameters can be used to detect a denial-of-sleep attack. Finally, we propose a novel architecture for tackling denial-of-sleep attacks by propagating relevant knowledge via intelligent agents

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore