8,618 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Media Scaling for Power Optimization on Wireless Video Sensors

    Get PDF
    Video-based sensor networks can be used to improve environment surveillance, health care and emergency response. Many sensor network scenarios require multiple high quality video streams that share limited wireless bandwidth. At the same time, the lifetime of wireless video sensors are constrained by the capacity of their batteries. Media scaling may extend battery life by reducing the video data rate while still maintaining visual quality, but comes at the expense of additional compression time. This thesis studies the effects of media scaling on video sensor energy consumption by: measuring the energy consumption on the different components of the video sensor; building a energy consumption model with several adjustable parameters to analyze the performance of a video sensor; exploring the trade-offs between the video quality and the energy consumption for a video sensor; and, finally, building a working video sensor to validate the accuracy of the model. The results show that the model is an accurate representation of the power usage of an actual video sensor. In addition, media scaling is often an effective way to reduce energy consumption in a video sensor

    Wireless Information Transfer with Opportunistic Energy Harvesting

    Full text link
    Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the narrowband flat-fading channel subject to time-varying co-channel interference. It is assumed that the receiver has no fixed power supplies and thus needs to replenish energy opportunistically via WEH from the unintended interference and/or the intended signal sent by the transmitter. We further assume a single-antenna receiver that can only decode information or harvest energy at any time due to the practical circuit limitation. Therefore, it is important to investigate when the receiver should switch between the two modes of information decoding (ID) and energy harvesting (EH), based on the instantaneous channel and interference condition. In this paper, we derive the optimal mode switching rule at the receiver to achieve various trade-offs between wireless information transfer and energy harvesting. Specifically, we determine the minimum transmission outage probability for delay-limited information transfer and the maximum ergodic capacity for no-delay-limited information transfer versus the maximum average energy harvested at the receiver, which are characterized by the boundary of so-called "outage-energy" region and "rate-energy" region, respectively. Moreover, for the case when the channel state information (CSI) is known at the transmitter, we investigate the joint optimization of transmit power control, information and energy transfer scheduling, and the receiver's mode switching. Our results provide useful guidelines for the efficient design of emerging wireless communication systems powered by opportunistic WEH.Comment: to appear in IEEE Transactions on Wireless Communicatio

    Energy efficient wireless sensor network communications based on computational intelligent data fusion for environmental monitoring

    Get PDF
    The study presents a novel computational intelligence algorithm designed to optimise energy consumption in an environmental monitoring process: specifically, water level measurements in flooded areas. This algorithm aims to obtain a tradeoff between accuracy and power consumption. The implementation constitutes a data aggregation and fusion in itself. A harsh environment can make the direct measurement of flood levels a difficult task. This study proposes a flood level estimation, inferred through the measurement of other common environmental variables. The benefit of this algorithm is tested both with simulations and real experiments conducted in Donñana, a national park in southern Spain where flood level measurements have traditionally been done manually.Junta de Andalucía P07-TIC-0247

    Fast design space exploration of vibration-based energy harvesting wireless sensors

    No full text
    An energy-harvester-powered wireless sensor node is a complicated system with many design parameters. To investigate the various trade-offs among these parameters, it is desirable to explore the multi-dimensional design space quickly. However, due to the large number of parameters and costly simulation CPU times, it is often difficult or even impossible to explore the design space via simulation. This paper presents a response surface model (RSM) based technique for fast design space exploration of a complete wireless sensor node powered by a tunable energy harvester. As a proof of concept, a software toolkit has been developed which implements the proposed design flow and incorporates either real data or parametrized models of the vibration source, the energy harvester, tuning controller and wireless sensor node. Several test scenarios are considered, which illustrate how the proposed approach permits the designer to adjust a wide range of system parameters and evaluate the effect almost instantly but still with high accuracy. In the developed toolkit, the estimated CPU time of one RSM estimation is 25s and the average RSM estimation error is less than 16.5
    corecore