161 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Industry 4.0: Industrial IoT Enhancement and WSN Performance Analysis

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enhancement of the Contention Access Period for Reducing Energy Consumption of Industrial Internet of Things Based on IPv6

    Get PDF
    Abstract: Industrial Internet of Things (IIoT) is an emerging technology in recent years, which is widely utilized for control, manage the manufacturing environment, and monitor production lines in the smart factories. The IPv6 has enabled the use of many IIoT devices, so these devices consume large amounts of energy. Many research efforts were made in this area aimed to improve power consumption and performance. This paper proposed the Contention Access Period Reduction Medium Access Control protocol (CAP Reduction MAC protocol) for reducing the CAP duration size based on IEEE 802.15.4e. The proposed MAC protocol leads to reduce the CAP portion. Thus the number of time slots, which assigned to the sensors will decrease. Moreover, this paper intends to estimate the performance of IIoT devices in terms of energy consumption, throughput, and delay time through an analysis of their respective ways of operation running the Contiki Operating System (OS). To validate the proposed protocol, different experiments are conducted based on the Cooja simulator. The proposed protocol can be reduced the overall energy consumption with up to 64.14 %, decreases the delay by 33.7 %, and increases throughput by 63.0 %

    Link-layer Security in TSCH Networks: Effect on Slot Duration

    Get PDF
    International audienceThe IEEE802.15.4e-2012 standard is widely used in multi-hop wireless Industrial Internet of Things (IIoT)applications. In the Time-Slotted Channel Hopping (TSCH) mode, nodes are synchronized, and time iscut into timeslots. A schedule orchestrates all communications, resulting in high reliability and low poweroperations. A timeslot must be long enough for a node to send a data frame to its neighbor, and for thatneighbor to send back an acknowledgment. Shorter timeslots enable higher bandwidth and lower latency, yetthe minimal timeslot duration is limited by how long link-layer security operations take. We evaluate theoverhead of link-layer security in TSCH networks in terms of minimal timeslot length, memory footprint,and energy consumption. We implement full link-layer security on a range of hardware platforms, exploringdierent hardware/software implementation strategies. Through an extensive measurement campaign, wequantify the advantage of hardware accelerations for link-layer security, and show how the minimal durationof a timeslot varies between 9 ms and 88 ms for the most common conguration, depending on hardwaresupport. Furthermore, we also highlighted the impact that the timeslot duration has on both high-levelapplication design and energy consumption
    • …
    corecore