2,146 research outputs found

    Design and implementation of application-specific medium access control protocol for scalable smart home embedded systems

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016By incorporating electrical devices, appliances and house features in a system that is controlled and monitored either remotely or on-site, smart home technologies have recently gained an increasing popularity. There are several smart home systems already available, ranging from simple on-site home monitoring to self-learning and Wi-Fi enabled systems. However, current systems do not fully make use of recent technological advancement and synergy among a variable number of sensors for improved data collection. For a synergistic system to be provident it needs to be modular and scalable to match exact user needs (type of applications and adequate number of sensors for each application). With an increased number of sensors intelligently placed to optimize the data collection, a wireless network is indispensable for a flexible and inexpensive installation. Such a network requires an efficient medium access control protocol to sustain a reliable system, provide flexibility in design and to achieve lower power consumption. This thesis brings to light practical ways to improve current smart home systems. As the main contribution of this work, we introduce a novel application-specific medium access control protocol able to support suggested improvements. In addition, a smart home prototype system is implemented to evaluate the protocol performance and prove concepts of recommended advances. This thesis covers the design of the proposed novel medium access protocol and the software/hardware implementation of the prototype system focusing on the monitoring and data analysis side, while providing inputs for the control side of the system. The smart home system prototype is Wi-Fi and Web connected, designed and implemented to emphasize system usability and energy efficiency

    Dynamic Power Management in Wireless Sensor Network

    Get PDF
    This research focuses on reducing or minimizing the power consumption, thereby increasing the network lifetime and also demonstrates a methodology for power consumption evaluation of WSN. The research also analyzes the energy consumption of ad hoc nodes using IEEE 802.11 interfaces; this was achieved using OPNET simulator. The evaluation takes into account the properties of the medium access protocol and the process of forwarding packets in ad hoc mode. The key point is to determine the node lifetime based on its average power consumption. The average power consumption is estimated considering how long the node remains sleeping, idle, receiving or transmitting

    Information fusion architectures for security and resource management in cyber physical systems

    Get PDF
    Data acquisition through sensors is very crucial in determining the operability of the observed physical entity. Cyber Physical Systems (CPSs) are an example of distributed systems where sensors embedded into the physical system are used in sensing and data acquisition. CPSs are a collaboration between the physical and the computational cyber components. The control decisions sent back to the actuators on the physical components from the computational cyber components closes the feedback loop of the CPS. Since, this feedback is solely based on the data collected through the embedded sensors, information acquisition from the data plays an extremely vital role in determining the operational stability of the CPS. Data collection process may be hindered by disturbances such as system faults, noise and security attacks. Hence, simple data acquisition techniques will not suffice as accurate system representation cannot be obtained. Therefore, more powerful methods of inferring information from collected data such as Information Fusion have to be used. Information fusion is analogous to the cognitive process used by humans to integrate data continuously from their senses to make inferences about their environment. Data from the sensors is combined using techniques drawn from several disciplines such as Adaptive Filtering, Machine Learning and Pattern Recognition. Decisions made from such combination of data form the crux of information fusion and differentiates it from a flat structured data aggregation. In this dissertation, multi-layered information fusion models are used to develop automated decision making architectures to service security and resource management requirements in Cyber Physical Systems --Abstract, page iv

    Intelligence at the Extreme Edge: A Survey on Reformable TinyML

    Full text link
    The rapid miniaturization of Machine Learning (ML) for low powered processing has opened gateways to provide cognition at the extreme edge (E.g., sensors and actuators). Dubbed Tiny Machine Learning (TinyML), this upsurging research field proposes to democratize the use of Machine Learning (ML) and Deep Learning (DL) on frugal Microcontroller Units (MCUs). MCUs are highly energy-efficient pervasive devices capable of operating with less than a few Milliwatts of power. Nevertheless, many solutions assume that TinyML can only run inference. Despite this, growing interest in TinyML has led to work that makes them reformable, i.e., work that permits TinyML to improve once deployed. In line with this, roadblocks in MCU based solutions in general, such as reduced physical access and long deployment periods of MCUs, deem reformable TinyML to play a significant part in more effective solutions. In this work, we present a survey on reformable TinyML solutions with the proposal of a novel taxonomy for ease of separation. Here, we also discuss the suitability of each hierarchical layer in the taxonomy for allowing reformability. In addition to these, we explore the workflow of TinyML and analyze the identified deployment schemes and the scarcely available benchmarking tools. Furthermore, we discuss how reformable TinyML can impact a few selected industrial areas and discuss the challenges and future directions

    Adaptive Algorithms for Batteryless LoRa-Based Sensors

    Get PDF
    Ambient energy-powered sensors are becoming increasingly crucial for the sustainability of the Internet-of-Things (IoT). In particular, batteryless sensors are a cost-effective solution that require no battery maintenance, last longer and have greater weatherproofing properties due to the lack of a battery access panel. In this work, we study adaptive transmission algorithms to improve the performance of batteryless IoT sensors based on the LoRa protocol. First, we characterize the device power consumption during sensor measurement and/or transmission events. Then, we consider different scenarios and dynamically tune the most critical network parameters, such as inter-packet transmission time, data redundancy and packet size, to optimize the operation of the device. We design appropriate capacity-based storage, considering a renewable energy source (e.g., photovoltaic panel), and we analyze the probability of energy failures by exploiting both theoretical models and real energy traces. The results can be used as feedback to re-design the device to have an appropriate amount energy storage and meet certain reliability constraints. Finally, a cost analysis is also provided for the energy characteristics of our system, taking into account the dimensioning of both the capacitor and solar panel
    • …
    corecore