13,739 research outputs found

    Real-time simulation of soft tissue deformation for surgical simulation

    Get PDF
    Surgical simulation plays an important role in the training, planning and evaluation of many surgical procedures. It requires realistic and real-time simulation of soft tissue deformation under interaction with surgical tools. However, it is challenging to satisfy both of these conflicting requirements. On one hand, biological soft tissues are complex in terms of material compositions, structural formations, and mechanical behaviours, resulting in nonlinear deformation characteristics under an external load. Due to the involvement of both material and geometric nonlinearities, the use of nonlinear elasticity causes a highly expensive computational load, leading to the difficulty to achieve the real-time computational performance required by surgical simulation. On the other hand, in order to satisfy the real-time computational requirement, most of the existing methods are mainly based on linear elasticity under the assumptions of small deformation and homogeneity to describe deformation of soft tissues. Such simplifications allow reduced runtime computation; however, they are inadequate for modelling nonlinear material properties such as anisotropy, heterogeneity and large deformation of soft tissues. In general, the two conflicting requirements of surgical simulation raise immense complexity in modelling of soft tissue deformation. This thesis focuses on establishment of new methodologies for modelling of soft tissue deformation for surgical simulation. Due to geometric and material nonlinearities in soft tissue deformation, the existing methods have only limited capabilities in achieving nonlinear soft tissue deformation in real-time. In this thesis, the main focus is devoted to the real-time and realistic modelling of nonlinear soft tissue deformation for surgical simulation. New methodologies, namely new ChainMail algorithms, energy propagation method, and energy balance method, are proposed to address soft tissue deformation. Results demonstrate that the proposed methods can simulate the typical soft tissue mechanical properties, accommodate isotropic and homogeneous, anisotropic and heterogeneous materials, handle incompressibility and viscoelastic behaviours, conserve system energy, and achieve realistic, real-time and stable deformation. In the future, it is projected to extend the proposed methodologies to handle surgical operations, such as cutting, joining and suturing, for topology changes occurred in surgical simulation

    Modelling Rod-like Flexible Biological Tissues for Medical Training

    Get PDF
    This paper outlines a framework for the modelling of slender rod-like biological tissue structures in both global and local scales. Volumetric discretization of a rod-like structure is expensive in computation and therefore is not ideal for applications where real-time performance is essential. In our approach, the Cosserat rod model is introduced to capture the global shape changes, which models the structure as a one-dimensional entity, while the local deformation is handled separately. In this way a good balance in accuracy and efficiency is achieved. These advantages make our method appropriate for the modelling of soft tissues for medical training applications

    A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics

    Full text link
    Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (\romannumeral 1) a fluid phase, and (\romannumeral 2) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically-consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.Comment: 29 pages, 11 figures, accepted for publication in Journal of the Mechanics and Physics of Solids. See journal for final versio

    A Comparison of Numerical Methods used for\ud Finite Element Modelling of Soft Tissue\ud Deformation

    Get PDF
    Soft tissue deformation is often modelled using incompressible nonlinear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular, the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. We investigate the effect of these choices on the accuracy of the computed solution, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. We set up model problems with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). We find that the choice of pressure basis functions are vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general that it is important to take the expected regularity of the solution into account when choosing a numerical scheme

    A novel model for one-dimensional morphoelasticity. Part I - Theoretical foundations

    Get PDF
    While classical continuum theories of elasticity and viscoelasticity have long been used to describe the mechanical behaviour of solid biological tissues, they are of limited use for the description of biological tissues that undergo continuous remodelling. The structural changes to a soft tissue associated with growth and remodelling require a mathematical theory of ‘morphoelasticity’ that is more akin to plasticity than elasticity. However, previously-derived mathematical models for plasticity are difficult to apply and interpret in the context of growth and remodelling: many important concepts from the theory of plasticity do not have simple analogues in biomechanics.\ud \ud In this work, we describe a novel mathematical model that combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. While our focus here is on one-dimensional problems, our model builds on earlier work based on the multiplicative decomposition of the deformation gradient and can be adapted to develop a three-dimensional theory. The foundation of this work is the concept of ‘effective strain’, a measure of the difference between the current state and a hypothetical state where the tissue is mechanically relaxed. We develop one-dimensional equations for the evolution of effective strain, and discuss a number of potential applications of this theory. One significant application is the description of a contracting fibroblast-populated collagen lattice, which we further investigate in Part II

    Computational modelling of void growth in swelled hydrogels

    Get PDF
    The nature and the large notable distinguishing features of polymeric gels explain their pervasive use as biomaterials in both regenerative medicine and tissue engineering. With regard to their biocompatibility, their ability to withstand large deformation and their significant capacity of solvent absorption, these biomaterials are often selected owing to their versatile mechanical properties and especially the closeness to soft biological tissues, amongst others. A finite-strain theory for the study of the overall behaviour of a porous polymeric gel where microvoids are present is presented. The swollen polymeric gel is modeled as a two-component body composed of two incompressible components, namely, an elastic porous polymer imbibed with a solvant. The chemical equilibrium is assumed to be preponderate at the interface between the porous polymer and the environment where the chemical potential of the solvent is fixed. The initially dry porous polymer undergoes large deformation induced by absorption of a solvent from the environment and mechanical loading. In this paper an attempt is made towards obtaining an estimation of the macroscopic responses of the swollen porous polymer to prescribed proportional loadings. To this end, a two-level representation of the material at hand for which the Representative Volume Element (RVE) imbibed with a solvent is a simple axisymmetric cylinder composed of a homogeneous matrix surrounding a spherical void, is considered. The computational study addresses the situation where the RVE is subjected to prescribed axial and lateral overall stresses under conditions of constant overall stress triaxiality. For fixed values of the Flory-Huggins parameter and the nominal concentration of the solvent, the overall stress-strain behaviour of the RVE model, the influence of the initial porosity, and the prescribed stress triaxiality ratio have been outlined

    The influence of anisotropic growth and geometry on the stress of solid tumors

    Get PDF
    Solid stresses can affect tumor patho-physiology in at least two ways: directly, by compressing cancer and stromal cells, and indirectly, by deforming blood and lymphatic vessels. In this work, we model the tumor mass as a growing hyperelastic material. We enforce a multiplicative decomposition of the deformation gradient to study the role of anisotropic tumor growth on the evolution and spatial distribution of stresses. Specifically, we exploit radial symmetry and analyze the response of circumferential and radial stresses to (a) degree of anisotropy, (b) geometry of the tumor mass (cylindrical versus spherical shape), and (c) different tumor types (in terms of mechanical properties). According to our results, both radial and circumferential stresses are compressive in the tumor inner regions, whereas circumferential stresses are tensile at the periphery. Furthermore, we show that the growth rate is inversely correlated with the stresses’ magnitudes. These qualitative trends are consistent with experimental results. Our findings therefore elucidate the role of anisotropic growth on the tumor stress state. The potential of stress-alleviation strategies working together with anticancer therapies can result in better treatments

    Porous-based rheological model for tissue fluidisation

    Get PDF
    It has been experimentally observed that cells exhibit a fluidisation process when subjected to a transient stretch, with an eventual recovery of the mechanical properties upon removal of the applied deformation. This fluidisation process is characterised by a decrease of the storage modulus and an increase of the phase angle. We propose a rheological model which is able to reproduce this combined mechanical response. The model is described in the context of continua and adapted to a cell-centred particle system that simulates cell–cell interactions. Mechanical equilibrium is coupled with two evolution laws: (i) one for the reference configuration, and (ii) another for the porosity or polymer density. The first law depends on the actual strain of the tissue, while the second assumes different remodelling rates during porosity increase and decrease. The theory is implemented on a particle based model and tested on a stretching experiment. The numerical results agree with the experimental measurements for different stretching magnitudes.Peer ReviewedPostprint (author's final draft
    • …
    corecore