549 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Get PDF
    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks

    Multi-objective function-based node-disjoint multipath routing for mobile ad hoc networks

    Get PDF
    Funding Information: This work was supported Korea Environmental Industry & Technology Institute (KEITI) grant funded by the Korea government (Ministry of Environment). Project No. RE202101551, the development of IoT-based technology for collecting and managing Big data on environmental hazards and health effects.Peer reviewedPublisher PD

    Maximizing Network Lifetime of Wireless Sensor-Actuator Networks under Graph Routing

    Get PDF
    Process industries are adopting wireless sensor-actuator networks (WSANs) as the communication infrastructure. The dynamics of industrial environments and stringent reliability requirements necessitate high degrees of fault tolerance in routing. WirelessHART is an open industrial standard for WSANs that have seen world-wide deployments. WirelessHART employs graph routing schemes to achieve network reliability through multiple paths. Since many industrial devices operate on batteries in harsh environments where changing batteries are prohibitively labor-intensive, WSANs need to achieve long network lifetime. To meet industrial demand for long-term reliable communication, this paper studies the problem of maximizing network lifetime for WSANs under graph routing. We formulate the network lifetime maximization problem for WirelessHART networks under graph routing. Then, we propose the optimal algorithm and two more efficient algorithms to prolong the network lifetime of WSANs. Experiments in a physical testbed and simulations show our linear programming relaxation and greedy heuristics can improve the network lifetime by up to 50% while preserving the reliability benefits of graph routing

    Multipath Routing over Wireless Mesh Networks

    Get PDF
    Master'sMASTER OF SCIENC
    • …
    corecore