837 research outputs found

    Energy Aware Routing in High Capacity Overlays in Wireless Sensor Networks

    Get PDF
    One of the most critical issues in wireless sensor networks is the limited availability of energy within the network nodes. Recently, the idea of deploying a high capacity overlay using virtual sinks with long range 802.11 links to ease congestion in the underlying sensor network has been explored. Since the VSs are battery powered, it is important to conserve energy in them too. To reduce the energy consumption, usually the shortest path (SP) route is preferred in networks. However, if only a few of the VS nodes are sending data, routing along the SP may require some additional VS nodes to be turned on just for the relaying purpose which otherwise could be turned off. Since the link bandwidth is high in 802.11 (Mbps) and the sensory data generation rate is low (Kbps), a high idle-mode energy cost may be incurred in the relaying VS nodes. In this paper, we explore the idea of using minimum connected dominating set (MCDS) based routes, since more energy can be saved by switching the non-dominator VSs to sleep mode and by funneling all the data through the MCDS nodes. We propose an energy-aware routing scheme that considers both the SP route and the MCDS nodes to discover a path along the VS network to the physical sink. Performance evaluation of the routing scheme shows a notable reduction in the overall energy consumption in the network with respect to SP routing while simultaneously maintaining an acceptable packet delivery rate.Computer Science Departmen

    Overlay networks for smart grids

    Get PDF

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    Structured Peer-to-Peer Overlay Deployment on MANET: A Survey

    Get PDF
    There are many common characteristics between Peer-to-Peer (P2P) overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, dynamicity and changing topology are the most shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality, and their routing information can complement that of MANET. MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. The aim of this paper is to survey current P2P over MANET systems. Specifically, this paper focuses on and investigates structured P2P over MANET. Overall, more than thirty distinct approaches have been classified into groups and introduced in tables providing a structured overview of the area. The survey addresses the identified approaches in terms of P2P systems, MANET underlay systems and the performance of the reviewed systems

    The Critical Neighbourhood Range for Asymptotic Overlay Connectivity in Dense Ad Hoc Networks

    Full text link
    peer reviewedWe define, for an overlay built on top of an ad hoc network, a simple criterion for neighbourhood: two overlay nodes are neighbours if and only if there exists a path between them of at most R hops, and R is called the (overlay) neighbourhood range. A small R may result in a disconnected overlay, while an unnecessarily large R would generate extra control traffic. We are interested in the minimum R ensuring overlay connectivity, the so-called critical R. We derive a necessary and sufficient condition on R to achieve asymptotic connectivity of the overlay almost surely, i.e. connectivity with probability 1 when the number of overlay nodes tends to infinity, under the hypothesis that the underlying ad hoc network is itself asymptotically almost surely connected. This condition, though asymptotic, sheds some light on the relation linking the critical R to the number of nodes n, the normalized radio transmission range r and the overlay density D (i.e., the proportion of overlay nodes). This condition can be considered as an approximation when the number of nodes is large enough. Since r is considered as a function of n, we are able to study the impact of topology control mechanisms, by showing how the shape of this function impacts the critical R.PAI MOTIO
    • …
    corecore