14,698 research outputs found

    Energy and Sampling Constrained Asynchronous Communication

    Full text link
    The minimum energy, and, more generally, the minimum cost, to transmit one bit of information has been recently derived for bursty communication when information is available infrequently at random times at the transmitter. This result assumes that the receiver is always in the listening mode and samples all channel outputs until it makes a decision. If the receiver is constrained to sample only a fraction f>0 of the channel outputs, what is the cost penalty due to sparse output sampling? Remarkably, there is no penalty: regardless of f>0 the asynchronous capacity per unit cost is the same as under full sampling, ie, when f=1. There is not even a penalty in terms of decoding delay---the elapsed time between when information is available until when it is decoded. This latter result relies on the possibility to sample adaptively; the next sample can be chosen as a function of past samples. Under non-adaptive sampling, it is possible to achieve the full sampling asynchronous capacity per unit cost, but the decoding delay gets multiplied by 1/f. Therefore adaptive sampling strategies are of particular interest in the very sparse sampling regime.Comment: Submitted to the IEEE Transactions on Information Theor

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided

    An Agent-Based Distributed Coordination Mechanism for Wireless Visual Sensor Nodes Using Dynamic Programming

    No full text
    The efficient management of the limited energy resources of a wireless visual sensor network is central to its successful operation. Within this context, this article focuses on the adaptive sampling, forwarding, and routing actions of each node in order to maximise the information value of the data collected. These actions are inter-related in a multi-hop routing scenario because each node’s energy consumption must be optimally allocated between sampling and transmitting its own data, receiving and forwarding the data of other nodes, and routing any data. Thus, we develop two optimal agent-based decentralised algorithms to solve this distributed constraint optimization problem. The first assumes that the route by which data is forwarded to the base station is fixed, and then calculates the optimal sampling, transmitting, and forwarding actions that each node should perform. The second assumes flexible routing, and makes optimal decisions regarding both the integration of actions that each node should choose, and also the route by which the data should be forwarded to the base station. The two algorithms represent a trade-off in optimality, communication cost, and processing time. In an empirical evaluation on sensor networks (whose underlying communication networks exhibit loops), we show that the algorithm with flexible routing is able to deliver approximately twice the quantity of information to the base station compared to the algorithm using fixed routing (where an arbitrary choice of route is made). However, this gain comes at a considerable communication and computational cost (increasing both by a factor of 100 times). Thus, while the algorithm with flexible routing is suitable for networks with a small numbers of nodes, it scales poorly, and as the size of the network increases, the algorithm with fixed routing is favoured

    On the Deployment of Healthcare Applications over Fog Computing Infrastructure

    Get PDF
    Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future

    Asynchronous CDMA Systems with Random Spreading-Part II: Design Criteria

    Full text link
    Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental limits of asynchronous CDMA systems are analyzed in terms of spectral efficiency and SINR at the output of the optimum linear detector. The focus of Part II is the design of low-complexity implementations of linear multiuser detectors in systems with many users that admit a multistage representation, e.g. reduced rank multistage Wiener filters, polynomial expansion detectors, weighted linear parallel interference cancellers. The effects of excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum linear receiver structures are investigated. Recursive expressions for universal weight design are given. The performance in terms of SINR is derived in the large-system limit and the performance improvement over synchronous systems is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-matched filtering and oversampling
    • 

    corecore