1,568 research outputs found

    Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, II: The mixed Dirichlet-Neumann Problem

    Get PDF
    In this paper we continue the study started in part I (posted). We consider a planar, bounded, mm-connected region Ω\Omega, and let \bord\Omega be its boundary. Let T\mathcal{T} be a cellular decomposition of \Omega\cup\bord\Omega, where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair (S,f)(S,f) where SS is a special type of a (possibly immersed) genus (m1)(m-1) singular flat surface, tiled by rectangles and ff is an energy preserving mapping from T(1){\mathcal T}^{(1)} onto SS. In part I the solution of a Dirichlet problem defined on T(0){\mathcal T}^{(0)} was utilized, in this paper we employ the solution of a mixed Dirichlet-Neumann problem.Comment: 26 pages, 16 figures (color

    Topological mechanics of origami and kirigami

    Get PDF
    Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.Comment: 5 pages, 3 figures + ~5 pages S

    Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, I: The Dirichlet Problem

    Full text link
    Consider a planar, bounded, mm-connected region Ω\Omega, and let \bord\Omega be its boundary. Let T\mathcal{T} be a cellular decomposition of \Omega\cup\bord\Omega, where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair (S,f)(S,f) where SS is a genus (m1)(m-1) singular flat surface tiled by rectangles and ff is an energy preserving mapping from T(1){\mathcal T}^{(1)} onto SS.Comment: 27 pages, 11 figures; v2 - revised definition (now denoted by the flux-gradient metric (1.9)) in section 1 and minor modifications of proofs; corrected typo

    A discrete Laplace-Beltrami operator for simplicial surfaces

    Get PDF
    We define a discrete Laplace-Beltrami operator for simplicial surfaces. It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called ``cotan formula'') except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace-Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay triangulations of piecewise flat surfaces revised and expanded. References added. Some minor changes, typos corrected. v3: fixed inaccuracies in discussion of flip algorithm, corrected attributions, added references, some minor revision to improve expositio

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure
    corecore