600 research outputs found

    Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision Kernels

    Get PDF
    Developing high performance embedded vision applications requires balancing run-time performance with energy constraints. Given the mix of hardware accelerators that exist for embedded computer vision (e.g. multi-core CPUs, GPUs, and FPGAs), and their associated vendor optimized vision libraries, it becomes a challenge for developers to navigate this fragmented solution space. To aid with determining which embedded platform is most suitable for their application, we conduct a comprehensive benchmark of the run-time performance and energy efficiency of a wide range of vision kernels. We discuss rationales for why a given underlying hardware architecture innately performs well or poorly based on the characteristics of a range of vision kernel categories. Specifically, our study is performed for three commonly used HW accelerators for embedded vision applications: ARM57 CPU, Jetson TX2 GPU and ZCU102 FPGA, using their vendor optimized vision libraries: OpenCV, VisionWorks and xfOpenCV. Our results show that the GPU achieves an energy/frame reduction ratio of 1.1–3.2× compared to the others for simple kernels. While for more complicated kernels and complete vision pipelines, the FPGA outperforms the others with energy/frame reduction ratios of 1.2–22.3×. It is also observed that the FPGA performs increasingly better as a vision application’s pipeline complexity grows

    Real-time embedded video denoiser prototype

    Get PDF
    International audienceLow light or other poor visibility conditions often generate noise on any vision system. However, video denoising requires a lot of computational effort and most of the state-of-the-art algorithms cannot be run in real-time at camera framerate. Noisy video is thus a major issue especially for embedded systems that provide low computational power. This article presents a new real-time video denoising algorithm for embedded platforms called RTE-VD [1]. We first compare its denoising capabilities with other online and offline algorithms. We show that RTE-VD can achieve real-time performance (25 frames per second) for qHD video (960x540 pixels) on embedded CPUs with an output image quality comparable to state-of-the-art algorithms. In order to reach real-time denoising, we applied several high-level transforms and optimizations. We study the relation between computation time and power consumption on several embedded CPUs and show that it is possible to determine find out frequency and core configurations in order to minimize either the computation time or the energy. Finally, we introduce VIRTANS our embedded real-time video denoiser based on RTE-VD

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    A New Real-Time Embedded Video Denoising Algorithm

    Get PDF
    International audienceMany embedded applications rely on video processing or on video visualization. Noisy video is thus a major issue for such applications. However, video denoising requires a lot of computational effort and most of the state-of-the-art algorithms cannot be run in real-time at camera framerate. This article introduces a new real-time video denoising algorithm for embedded platforms called RTE-VD. We first compare its denoising capabilities with other online and offline algorithms. We show that RTE-VD can achieve real-time performance (25 frames per second) for qHD video (960×540 pixels) on embedded CPUs and the output image quality is comparable to state-of-the-art algorithms. In order to reach real-time denoising, we applied several high-level transforms and optimizations (SIMDization, multi-core parallelization, operator fusion and pipelining). We study the relation between computation time and power consumption on several embedded CPUs and show that it is possible to determine different frequency and core configurations in order to minimize either the computation time or the energy

    Enhancing a Neurosurgical Imaging System with a PC-based Video Processing Solution

    Get PDF
    This work presents a PC-based prototype video processing application developed to be used with a specific neurosurgical imaging device, the OPMIÂź PenteroTM operating microscope, in the Department of Neurosurgery of Helsinki University Central Hospital at Töölö, Helsinki. The motivation for implementing the software was the lack of some clinically important features in the imaging system provided by the microscope. The imaging system is used as an online diagnostic aid during surgery. The microscope has two internal video cameras; one for regular white light imaging and one for near-infrared fluorescence imaging, used for indocyanine green videoangiography. The footage of the microscope’s current imaging mode is accessed via the composite auxiliary output of the device. The microscope also has an external high resolution white light video camera, accessed via a composite output of a separate video hub. The PC was chosen as the video processing platform for its unparalleled combination of prototyping and high-throughput video processing capabilities. A thorough analysis of the platform and efficient video processing methods was conducted in the thesis and the results were used in the design of the imaging station. The features found feasible during the project were incorporated into a video processing application running on a GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features was ensured beforehand by consulting the neurosurgeons using the original system. The most significant shortcomings of the original imaging system were mended in this work. The key features of the developed application include: live streaming, simultaneous streaming and recording, and playing back of upto two video streams. The playback mode provides full media player controls, with a frame-by-frame precision rewinding, in an intuitive and responsive interface. A single view and a side-by-side comparison mode are provided for the streams. The former gives more detail, while the latter can be used, for example, for before-after and anatomic-angiographic comparisons.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    The use of primitives in the calculation of radiative view factors

    Get PDF
    Compilations of radiative view factors (often in closed analytical form) are readily available in the open literature for commonly encountered geometries. For more complex three-dimensional (3D) scenarios, however, the effort required to solve the requisite multi-dimensional integrations needed to estimate a required view factor can be daunting to say the least. In such cases, a combination of finite element methods (where the geometry in question is sub-divided into a large number of uniform, often triangular, elements) and Monte Carlo Ray Tracing (MC-RT) has been developed, although frequently the software implementation is suitable only for a limited set of geometrical scenarios. Driven initially by a need to calculate the radiative heat transfer occurring within an operational fibre-drawing furnace, this research set out to examine options whereby MC-RT could be used to cost-effectively calculate any generic 3D radiative view factor using current vectorisation technologies

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of ÎŒs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers
    • 

    corecore