318 research outputs found

    Aspects of bond graph modelling in control

    Get PDF
    Abstract available: p. i

    Port-Hamiltonian Modeling for Control

    Get PDF
    This article provides a concise summary of the basic ideas and concepts in port-Hamiltonian systems theory and its use in analysis and control of complex multiphysics systems. It gives special attention to new and unexplored research directions and relations with other mathematical frameworks. Emergent control paradigms and open problems are indicated, including the relation with thermodynamics and the question of uniting the energy-processing view of control, as emphasized by port-Hamiltonian systems theory, with a complementary information-processing viewpoint.</p

    Dynamic Characterization of Typical Electrical Circuits via Structural Properties

    Get PDF
    The characterization of a class of electrical circuits is carried out in terms of both stability properties and steady-state behavior. The main contribution is the interpretation of the electrical topology (how the elements that conform the circuits are interconnected) in terms of mathematical properties derived from the structure of their models. In this sense, at what extent the topology by itself defines the dynamic behavior of the systems is explained. The study is based on the graph theory allowing capturing, departing from the well-known Kirchhoff laws, the topology of the circuits into several matrices with specific structure. The algebraic analysis of these matrices permits identifying conditions that determine whether the system is stable in the sense of Lyapunov and the kind of steady-state behavior that it exhibits. The approach is mainly focused on typical topologies widely used in practice, namely, radial, ring, and mesh networks
    • …
    corecore