121 research outputs found

    CNT-based RFID passive gas sensor

    Get PDF

    RFID multiantenna systems for wireless communications and sensing

    Get PDF
    Many scientific, industrial and medical applications require the measurement of different physical parameters in order to collect information about the spatially distributed status of some process. Very often this information needs to be collected remotely, either due to the spatial dispersion of the measurement points or due to their inaccessibility. A wireless embedded self-powered sensor may be a convenient solution to be placed at these inaccessible locations. This thesis is devoted to study the analytical relation governing the electromagnetic coupling between a reader and a embeddable self-powered sensor, based on radio frequency identification (RFID) technology, which is capable of wirelessly retrieving the status of physical parameters at a remote and inaccessible location. The physical parameter to be sensed may be the electromagnetic (EM) field existing at that location (primary measurement) or the indirect measurement of other parameters such as the temperature, humidity, etc. (secondary measurement). Given the simplicity of the RFID solution (highly embeddable properties, scavenging capabilities, penetration and radio coverage characteristics, etc.) the measurement can be done at a single location, or it can be extended to a set of measuring locations (an array or grid of sensors). The analytical relation is based on a reciprocity formulation studying the modulation of the scattered field by the embedded sensor in relation with the incident field, and allows to define a set of quality parameters of interest for the optimum design of the sensors. Particular attention is given to the scavenging circuitry as well as to the antenna design relevant to the sensing objective. In RFID tags, the existence of an RF harvesting section is an improvement with respect to conventional scattering field probes since it removes the need of DC biasing lines or optical fibers to modulate the sensor. However, this harvesting section introduces non-linearities in the response of the sensor, which requires a proper correction to use them as EM-field probes, although the characterization of the non-linearities of the RFID tag cannot be directly done using a conventional vector network analyzer (VNA), due to the requirements of an RFID protocol excitation. Due to this, this thesis proposes an alternative measurement approach that allows to characterize the different scattering states used for the modulation, in particular its non-linear behavior. In addittion, and taking this characterization as the starting point, this thesis proposes a new measurement setup for EM-field measurements based on the use of multiple tones to enlarge the available dynamic range, which is experimentally demonstrated in the measurement of a radiation pattern, as well as in imaging applications. The RFID-based sensor response is electromagnetically sensitive to the dielectric properties of its close environment. However, the governing formulation for the response of the probe mixes together a set of different contributions, the path-loss, the antenna impedance, the loads impedance, etc. As a consequence, it is not possible to isolate each contribution from the others using the information available with a conventional RFID sensor. This thesis mathematically proposes and experimentally develops a modification of the modulation scheme to introduce a new set of multi-load scattering states that increases the information available in the response and properly isolate each term. Moreover, this thesis goes a step forward and introduces a new scattering state of the probe sensitive to temperature variations that do not depend on the environment characteristics. This new configuration enables robust environmental sensing in addition to EM-field measurements, and sensing variations of the dielectric properties of the environment

    The Design, Simulation and Implementation of Inductively Powered Sensor Systems: New Applications, Design Methodologies and a Unique Coil Topology

    Get PDF
    Three case studies have been presented for new applications of inductive energy and data transfer (iEDT)-sensor systems. The first application is a condensation detection system for the windshield of an automobile. The developed iEDT-sensor prototype provides a low cost alternative for wireless dew point measurements which involves no wired connections and so can be easily replaced when the windshield is damaged. The second application involves an iEDT-sensor prototype developed wirelessly query the flow rate in a pipe. For the third application, measurement results were performed for a wireless implant system. The application involves a Wireless Sensor (WS), implanted under the dura mater, which was to be used for long term cortical measurement and stimulation with a very high resolution. A suite of tools provided two independent methods of simulating the coil self resonance, quality factor, coupling and self inductance as well as the overall system efficiency. The inductance and coupling were verified within 10% error compared to measurement results and the resonance, quality factor and efficiency to within 30% error. An accurate simulation of the efficiency was predicated by an accurate simulation of the quality factor at the operating frequency. A series of scripts were also developed to automate the construction of the coil geometry, the simulation control and the compilation of the simulation results. These scripts offered the ability to quickly analyze variations in implementation and their affect on the system parameters and efficiency. For the third application, a new and unique topology for the iEDT-sensor system was presented which resulted in three redundant and independent implant coils each capable of simultaneously delivering power to the sensor electronics. This phased array topology has never before been examined for iEDT-systems as far as is known by the author. The new topology demonstrated a similar efficiency when compared to a single implant coil system of the same dimensions and a similar quality factor. Upon implantation, simulations demonstrated that the expected loss in efficiency should be limited to 10%. SAR-value simulations showed that the ISM frequencies at or below 13.56MHz would be in compliance with FCC regulations. The coupling and self inductance measurements for the phased array coil system were confirmed within 10% error compared to the simulations and the quality factor, self-resonance and efficiency were also shown to be accurate to within 20%. The simulated maximum efficiency of the phased array system was, however, substantially lower than the analytically calculated efficiency due to parasitic effects. The outlook for the work is as follows. The scripts should be expanded to include inductors with magnetic cores in order to allow for high power and low frequency applications as well as 3-D simulations in order to allow for more complex geometries. It should also be possible to increase the efficiency per unit area of the phased array coil system by minimizing the parasitic impedance thereby leading to an efficiency per unit area that is greater than that of a single coil system. The result would be a higher efficiency system, especially important for high power applications. This type of phased array coil approach could also be employed in the coil system of the Wireless Power Supply in order to create large areas which could efficiently supply mobile wireless devices with power

    Circuit design in complementary organic technologies

    Get PDF

    Resonant coils analysis for inductively coupled wireless power transfer applications

    Get PDF
    This paper proposes Wireless Power Transfer (WPT) system, consisting of transmitter-receiver coils along with some conditioning and stabilizing circuits. The transmitter circuit is designed with a simple H bridge circuit to supply the pulses to source coil. The efficiency variation or performance with respect to the coil size has been demonstrated in this paper, which is not well demonstrated experimentally in the past. It is about an inductive link efficiency calculation as a function of the geometrical dimensions. The efficiency has been derived analytically, and analytical results are validated experimentally. From the results observed the effect of geometrical dimensions (area, distance, shape, and size) is explored. The performance analysis evaluated analytically against experimentally, infers that the inductive coupling with same sized coil has achieved maximum power transfer wirelessly, for a shorter distance with applied input voltage of 24 V at resonance frequency of 180 kHz. This proposed system is practically tested for applications such as charging of devices or providing wireless sensor networks with energy supplied. The results have got useful utility for Electric Vehicles automobile industry. © 2016 IEEE
    corecore