7,842 research outputs found

    Energy Proportionality and Performance in Data Parallel Computing Clusters

    Full text link
    Energy consumption in datacenters has recently become a major concern due to the rising operational costs andscalability issues. Recent solutions to this problem propose the principle of energy proportionality, i.e., the amount of energy consumedby the server nodes must be proportional to the amount of work performed. For data parallelism and fault tolerancepurposes, most common file systems used in MapReduce-type clusters maintain a set of replicas for each data block. A coveringset is a group of nodes that together contain at least one replica of the data blocks needed for performing computing tasks. In thiswork, we develop and analyze algorithms to maintain energy proportionality by discovering a covering set that minimizesenergy consumption while placing the remaining nodes in lowpower standby mode. Our algorithms can also discover coveringsets in heterogeneous computing environments. In order to allow more data parallelism, we generalize our algorithms so that itcan discover k-covering sets, i.e., a set of nodes that contain at least k replicas of the data blocks. Our experimental results showthat we can achieve substantial energy saving without significant performance loss in diverse cluster configurations and workingenvironments

    A Parallel Monte Carlo Code for Simulating Collisional N-body Systems

    Full text link
    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures, and the introduction of a parallel random number generation scheme, as well as a parallel sorting algorithm, required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. The implementation uses the Message Passing Interface (MPI) library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude, from 10^5 to 10^7. We find that our results are in good agreement with self-similar core-collapse solutions, and the core collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within less than 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N=10^5, 128 for N=10^6 and 256 for N=10^7. The runtime reaches a saturation with the addition of more processors beyond these limits which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60x, 100x, and 220x, respectively.Comment: 53 pages, 13 figures, accepted for publication in ApJ Supplement

    Direct N-body Simulations

    Get PDF
    Special high-accuracy direct force summation N-body algorithms and their relevance for the simulation of the dynamical evolution of star clusters and other gravitating N-body systems in astrophysics are presented, explained and compared with other methods. Other methods means here approximate physical models based on the Fokker-Planck equation as well as other, approximate algorithms to compute the gravitational potential in N-body systems. Questions regarding the parallel implementation of direct ``brute force'' N-body codes are discussed. The astrophysical application of the models to the theory of relaxing rotating and non-rotating collisional star clusters is presented, briefly mentioning the questions of the validity of the Fokker-Planck approximation, the existence of gravothermal oscillations and of rotation and primordial binaries.Comment: 32 pages, 13 figures, in press in Riffert, H., Werner K. (eds), Computational Astrophysics, The Journal of Computational and Applied Mathematics (JCAM), Elsevier Press, Amsterdam, 199
    • …
    corecore