2,357 research outputs found

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de EconomĂ­a y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Time series forecasting with the WARIMAX-GARCH method

    Get PDF
    It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (WARIMAX-GARCH) method, is proposed to improve predictive performance and accuracy but also to address, at least in part, the problem of unavailable EVs. Basically, the WARIMAX-GARCH method obtains Wavelet “EVs” (WEVs) from Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (ARIMAX-GARCH) models applied to Wavelet Components (WCs) that are initially determined from the underlying time series. The WEVs are, in fact, treated by the WARIMAX-GARCH method as if they were conventional EVs. Similarly to GARCH and ARIMA-GARCH models, the WARIMAX-GARCH method is suitable for time series exhibiting non-linear characteristics such as conditional variance that depends on past values of observed data. However, unlike those, it can explicitly model frequency domain patterns in the series to help improve predictive performance. An application to a daily time series of dam displacement in Brazil shows the WARIMAX-GARCH method to remarkably outperform the ARIMA-GARCH method, as well as the (multi-layer perceptron) Artificial Neural Network (ANN) and its wavelet version referred to as Wavelet Artificial Neural Network (WANN) as in [1], on statistical measures for both in-sample and out-of-sample forecasting

    Estimation Of Idle Time Using Machine Learning Models For Vehicle-To-Grid (V2G) Integration And Services

    Get PDF
    As the Electric Vehicles (EVs) market continues to expand, ensuring the access to charging stations remains a significant concern. This work focuses on addressing multiple challenges related to EV charging behavior and Vehicle-to-Grid (V2G) services. Firstly, it focuses on accurate minute-ahead (20 minute \& 30 minute intervals) load forecasts for an EV charging station by using four years of historical data, from 2018-2021. This data is recorded from a university campus garage charging station. Machine Learning (ML) models such as Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Random Forest (RF), and Neural Networks (NN) are employed for load forecasts in terms of Kilowatt hour (kWh) delivered from 54 charging stations. Preliminary results indicate that RF method performed better compared to other ML approaches, achieving a average Mean Absolute Error (MAE) of 7.26 on historical weekdays data. Secondly, it focuses on estimating the probability of aggregated available capacity of users for V2G connections, which could be sold back to the grid through V2G system. To achieve this, an Idle Time (IT) parameter was tracked from the time spent by the EV users at the charging station after being fully charged. ML classification methods such as Logistic Regression (LR) and Linear Support Vector Classifier (SVC) were employed to estimate the IT variable. The SVC model performed better in estimating IT variable with an accuracy of 85% over LR 81%. This work also analyzes the aggregated excess kWh available from the charging stations for V2G services, which offer benefits to both EV owners through incentives and the grid by balancing the load. ML models, including Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), Long-Short Term Memory (LSTM), and Random Forest (RF), are employed. LSTM performs better for this prediction problem with a Mean Absolute Percentage Error (MAPE) of 3.12, and RF as second best with lowest 3.59, when considering historical data on weekdays. Furthermore, this work estimated the number of users available for V2G services corresponding to 15\% and 30\% of excess kWh, by using ML classification models such as Decision Tree (DT) and K Nearest Neighbor (KNN). Among these models, DT performed better, with highest 89% and 84% accuracy respectively. This work also investigated the impact of the COVID-19 pandemic on EV users\u27 charging behavior. This study analyzes the behavior modelled as before, after, and during COVID-19, employing data visualization using K-means and hierarchical clustering methods to identify common charging pattern with connection and disconnection time of the vehicles. K-means clustering proves to be more effective in all three scenarios modeled with a high silhouette index. Furthermore, prediction of collective charging session duration is achieved using ML Models, RF and XgBoost which achieved a MAPE of 14.6% and 15.1% respectively

    Seasonality effect analysis and recognition of charging behaviors of electric vehicles: A data science approach

    Get PDF
    Electric vehicles (EVs) presence in the power grid can bring about pivotal concerns regarding their energy requirements. EVs charging behaviors can be affected by several aspects including socio-economics, psychological, seasonal among others. This work proposes a case study to analyze seasonal effects on charging patterns, using a public real-world based dataset that contains information from the aggregated load of the total charging stations of Boulder, Colorado. Our approach targets to forecast and recognize EVs demand considering seasonal factors. Principal component analysis (PCA) was used to provide a visual representation of the variables and their contribution and the correlation among them. Then, twelve classification models were trained and tested to discriminate among seasons the charging load of electric vehicles. Later, a benchmark stage is presented for regression as well as for classification results. For regression models, examined through Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), the random Forest provides better prediction than quasi-Poisson model widely. However, it was observed that for large variations in electric vehicles’ charging load, quasi-Poisson fits better than random forest. For the classification models, evaluated through Accuracy and the Area under the Curve, the Lasso and elastic-net regularized generalized linear (GLMNET) model provided the best global performance with accuracy up to 100% when evaluated on the test dataset. The results of this work offer great insights for enhancing demand response strategies that involve PEV charging regarding charging habits across seasons

    An Overview of Carbon Footprint Mitigation Strategies. Machine Learning for Societal Improvement, Modernization, and Progress

    Get PDF
    Among the most pressing issues in the world today is the impact of globalization and energy consumption on the environment. Despite the growing regulatory framework to prevent ecological degradation, sustainability continues to be a problem. Machine learning can help with the transition toward a net-zero carbon society. Substantial work has been done in this direction. Changing electrical systems, transportation, buildings, industry, and land use are all necessary to reduce greenhouse gas emissions. Considering the carbon footprint aspect of sustainability, this chapter provides a detailed overview of how machine learning can be applied to forge a path to ecological sustainability in each of these areas. The chapter highlights how various machine learning algorithms are used to increase the use of renewable energy, efficient transportation, and waste management systems to reduce the carbon footprint. The authors summarize the findings from the current research literature and conclude by providing a few future directions

    The role of asymmetric prediction losses in smart charging of electric vehicles

    Get PDF
    Climate change prompts humanity to look for decarbonisation opportunities, and a viable option is to supply electric vehicles with renewable energy. The stochastic nature of charging demand and renewable generation requires intelligent charging driven by predictions of charging behaviour. The conventional prediction models of charging behaviour usually minimise the quadratic loss function. Moreover, the adequacy of predictions is almost solely evaluated by accuracy measures, disregarding the consequences of prediction losses in an application context. Here, we study the role of asymmetric prediction losses which enable balancing the over- and under-predictions and adjust predictions to smart charging algorithms. Using the main classes of machine learning methods, we trained prediction models of the connection duration and compared their performance for various asymmetries of the loss function. In addition, we proposed a methodological approach to quantify the consequences of prediction losses on the performance of selected archetypal smart charging schemes. In concrete situations, we demonstrated that an appropriately selected degree of the loss function asymmetry is crucial as it almost doubles the price range where the smart charging is beneficial, and increases the extent to which the charging demand is satisfied up to 40%. Additionally, the proposed methods improve charging fairness since the distribution of unmet charging demand across vehicles becomes more homogeneous.IA4TES MIA.2021.M04.000
    • 

    corecore