4,481 research outputs found

    Optimal Cooperative Cognitive Relaying and Spectrum Access for an Energy Harvesting Cognitive Radio: Reinforcement Learning Approach

    Full text link
    In this paper, we consider a cognitive setting under the context of cooperative communications, where the cognitive radio (CR) user is assumed to be a self-organized relay for the network. The CR user and the PU are assumed to be energy harvesters. The CR user cooperatively relays some of the undelivered packets of the primary user (PU). Specifically, the CR user stores a fraction of the undelivered primary packets in a relaying queue (buffer). It manages the flow of the undelivered primary packets to its relaying queue using the appropriate actions over time slots. Moreover, it has the decision of choosing the used queue for channel accessing at idle time slots (slots where the PU's queue is empty). It is assumed that one data packet transmission dissipates one energy packet. The optimal policy changes according to the primary and CR users arrival rates to the data and energy queues as well as the channels connectivity. The CR user saves energy for the PU by taking the responsibility of relaying the undelivered primary packets. It optimally organizes its own energy packets to maximize its payoff as time progresses

    On the Stability of Random Multiple Access with Stochastic Energy Harvesting

    Full text link
    In this paper, we consider the random access of nodes having energy harvesting capability and a battery to store the harvested energy. Each node attempts to transmit the head-of-line packet in the queue if its battery is nonempty. The packet and energy arrivals into the queue and the battery are all modeled as a discrete-time stochastic process. The main contribution of this paper is the exact characterization of the stability region of the packet queues given the energy harvesting rates when a pair of nodes are randomly accessing a common channel having multipacket reception (MPR) capability. The channel with MPR capability is a generalized form of the wireless channel modeling which allows probabilistic receptions of the simultaneously transmitted packets. The results obtained in this paper are fairly general as the cases with unlimited energy for transmissions both with the collision channel and the channel with MPR capability can be derived from ours as special cases. Furthermore, we study the impact of the finiteness of the batteries on the achievable stability region.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Saint Petersburg, Russia, Aug. 201

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Fast-Convergent Learning-aided Control in Energy Harvesting Networks

    Full text link
    In this paper, we present a novel learning-aided energy management scheme (LEM\mathtt{LEM}) for multihop energy harvesting networks. Different from prior works on this problem, our algorithm explicitly incorporates information learning into system control via a step called \emph{perturbed dual learning}. LEM\mathtt{LEM} does not require any statistical information of the system dynamics for implementation, and efficiently resolves the challenging energy outage problem. We show that LEM\mathtt{LEM} achieves the near-optimal [O(ϵ),O(log(1/ϵ)2)][O(\epsilon), O(\log(1/\epsilon)^2)] utility-delay tradeoff with an O(1/ϵ1c/2)O(1/\epsilon^{1-c/2}) energy buffers (c(0,1)c\in(0,1)). More interestingly, LEM\mathtt{LEM} possesses a \emph{convergence time} of O(1/ϵ1c/2+1/ϵc)O(1/\epsilon^{1-c/2} +1/\epsilon^c), which is much faster than the Θ(1/ϵ)\Theta(1/\epsilon) time of pure queue-based techniques or the Θ(1/ϵ2)\Theta(1/\epsilon^2) time of approaches that rely purely on learning the system statistics. This fast convergence property makes LEM\mathtt{LEM} more adaptive and efficient in resource allocation in dynamic environments. The design and analysis of LEM\mathtt{LEM} demonstrate how system control algorithms can be augmented by learning and what the benefits are. The methodology and algorithm can also be applied to similar problems, e.g., processing networks, where nodes require nonzero amount of contents to support their actions
    corecore