2,562 research outputs found

    Power Systems Monitoring and Control using Telecom Network Management Standards

    Get PDF
    Historically, different solutions have been developed for power systems control and telecommunications network management environments. The former was characterized by proprietary solutions, while the latter has been involved for years in a strong standardization process guided by criteria of openness. Today, power systems control standardization is in progress, but it is at an early stage compared to the telecommunications management area, especially in terms of information modeling. Today, control equipment tends to exhibit more computational power, and communication lines have increased their performance. These trends hint at some conceptual convergence between power systems and telecommunications networks from a management perspective. This convergence leads us to suggest the application of well-established telecommunications management standards for power systems control. This paper shows that this is a real medium-to-long term possibility

    Large, long range tensile forces drive convergence during

    Get PDF
    Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 mN during gastrulation and over 4 mN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 mN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. © Shook et al

    ArrayBridge: Interweaving declarative array processing with high-performance computing

    Full text link
    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.Comment: 12 pages, 13 figure

    Tools in the orbit space approach to the study of invariant functions: rational parametrization of strata

    Full text link
    Functions which are equivariant or invariant under the transformations of a compact linear group GG acting in an euclidean space n\real^n, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the GG-orbits with the same orbit-type. In this paper we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.Comment: Figures generated through texdraw package; revised version appearing in J. Phys. A: Math. Ge

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms

    Full text link
    The deployment of large-scale distributed systems, e.g., publish-subscribe platforms, that operate over sensitive data using the infrastructure of public cloud providers, is nowadays heavily hindered by the surging lack of trust toward the cloud operators. Although purely software-based solutions exist to protect the confidentiality of data and the processing itself, such as homomorphic encryption schemes, their performance is far from being practical under real-world workloads. The performance trade-offs of two novel hardware-assisted memory protection mechanisms, namely AMD SEV and Intel SGX - currently available on the market to tackle this problem, are described in this practical experience. Specifically, we implement and evaluate a publish/subscribe use-case and evaluate the impact of the memory protection mechanisms and the resulting performance. This paper reports on the experience gained while building this system, in particular when having to cope with the technical limitations imposed by SEV and SGX. Several trade-offs that provide valuable insights in terms of latency, throughput, processing time and energy requirements are exhibited by means of micro- and macro-benchmarks.Comment: European Commission Project: LEGaTO - Low Energy Toolset for Heterogeneous Computing (EC-H2020-780681

    Dynamic Context Awareness of Universal Middleware based for IoT SNMP Service Platform

    Get PDF
    This study focused on the Universal Middleware design for the IoT (Internet of Things) service gateway for the implementation module of the convergence platform. Recently, IoT service gateway including convergence platform could be supported on dynamic module system that is required mounting and recognized intelligent status with the remote network protocol. These awareness concepts support the dynamic environment of the cross-platform distributed computing technology is supported by these idea as a Universal Middleware for network substitution. Distribution system commonly used in recent embedded systems include CORBA (Common Object Request Broker Architecture), RMI (Remote Method Invocation), DCE (Distributed Computing Environment) for dynamic service interface, and suggested implementations of a device object context. However, the aforementioned technologies do not support each standardization of application services, communication protocols, and data, but are also limited in supporting inter-system scalability. In particular, in order to configure an IoT service module, the system can be simplified, and an independent service module can be configured as long as it can support the standardization of modules based on hardware and software components. This paper proposed a design method for Universal Middleware that, by providing IoT modules and service gateways with scalability for configuring operating system configuration, may be utilized as an alternative. This design could be a standardized interface provisioning way for hardware and software components as convergence services, and providing a framework for system construction. Universal Middleware Framework could be presented and dynamic environment standardization module of network protocols, various application service modules such as JINI (Apache River), UPnP (Universal Plug & Play), SLP (Service Location Protocol) bundles that provide communication facilities, and persistence data module. In this IoT gateway, management for based Universal Middleware framework support and available for each management operation, application service component could be cross-executed over SNMP (Simple Network Management Protocol) version 1, version 2, and version 3. The way of SNMP extension service modules are conducted cross-support each module and independent system meta-information that could be built life cycle management component through the MIB (Management Information Base) information unit analysis. Therefore, the MIB role of relation with the Dispatcher applied to support multiple concurrent SNMP messages by receiving incoming messages and managing the transfer of PDU (Protocol Data Unit) between the RFC 1906 network in this study. Results of the study revealed utilizing Universal Middleware that dynamic situations of context objects with mechanisms and tools to publish information could be consisted of IoT to standardize module interfaces to external service clients as a convergence between hardware and software platforms

    Towards a network management solution for vehicular delay-tolerant networks

    Get PDF
    Vehicular networks appeared as a new communication solution where vehicles act as a communication infrastructure, providing data communications through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. Vehicular Delay-Tolerant Networks (VDTNs) are a new disruptive network architecture assuming delay tolerant networking paradigm where there are no end-to-end connectivity. In this case the incial node transmits the data to a closed node, the data will be carried by vehicles, hop to hop until the destination. This dissertation focuses on a proposal of a network management solution, based standard protocol Simple Network Management Protocol (SNMP) to VDTN networks. The developed solution allows control a VDTN netowork through a Network Management System (NMS) with the objective to detect and, if it’s possible, anticipate, possible errors on network. The research methodology used was the prototyping. So, it was built a network management module to the laboratorial prototype, called VDTN@Lab. The system built include a MIB (Management Information Base) placed in all vehicular network nodes. The solution was built, demonstrated, validated and evaluated their performance, being ready for use.As redes veiculares foram desenhadas para permitir que os veículos possam transportar dados criando assim um novo tipo de redes, caracterizando-se por dois tipos de comunicação: comunicações veículo-para-veículo (V2V) ou comunicações veículo-parainfra-estrutura (V2I). Redes veiculares intermitentes (do Inglês Vehicular Delay-Tolerant Networks - VDTNs) surgiram como uma nova arquitectura de rede de dados onde os veículos são utilizados como infra-estruturas de comunicação. As VDTNs caracterizam-se por serem redes veiculares baseadas no paradigma de comunicações intermitentes. Nas redes VDTN não existe uma ligação permanente extremo a extremo entre o emissor e o receptor. Neste caso, o nó inicial transmite os dados para um nó que esteja junto dele e assim sucessivamente, os dados vão sendo transportados pelos veículos, salto a salto até ao destinatário final. Esta dissertação centra-se na proposta de uma solução de gestão de rede, baseada no protocolo estandardizado Simple Network Management Protocol (SNMP) para redes VDTN. A solução construída permite controlar uma rede VDTN através de um sistema de gestão de rede (do Inglês Network Management System - NMS) com o objectivo de detectar e, se possível antecipar, possíveis erros na rede. A metodologia de investigação utilizada foi a prototipagem. Assim, foi construído um módulo de gestão de redes para o protótipo laboratorial, chamado VDTN@Lab. O sistema construído inclui uma MIB (Management Information Base) que é colocada em todos os nós de uma rede veicular, tanto fixos como móveis. A solução foi construída, demonstrada, validade e avaliado o seu desempenho, estando assim pronta para ser utilizada
    corecore