4,261 research outputs found

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case

    Full text link
    We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.Comment: 32 pages, 4 figures, 6 table

    A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case

    Get PDF
    We consider a linear elliptic partial differential equation (PDE) with a generic uniformly bounded parametric coefficient. The solution to this PDE problem is approximated in the framework of stochastic Galerkin finite element methods. We perform a posteriori error analysis of Galerkin approximations and derive a reliable and efficient estimate for the energy error in these approximations. Practical versions of this error estimate are discussed and tested numerically for a model problem with non-affine parametric representation of the coefficient. Furthermore, we use the error reduction indicators derived from spatial and parametric error estimators to guide an adaptive solution algorithm for the given parametric PDE problem. The performance of the adaptive algorithm is tested numerically for model problems with two different non-affine parametric representations of the coefficient.Comment: 32 pages, 4 figures, 6 table

    Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations

    Full text link
    This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions

    The ROMES method for statistical modeling of reduced-order-model error

    Full text link
    This work presents a technique for statistically modeling errors introduced by reduced-order models. The method employs Gaussian-process regression to construct a mapping from a small number of computationally inexpensive `error indicators' to a distribution over the true error. The variance of this distribution can be interpreted as the (epistemic) uncertainty introduced by the reduced-order model. To model normed errors, the method employs existing rigorous error bounds and residual norms as indicators; numerical experiments show that the method leads to a near-optimal expected effectivity in contrast to typical error bounds. To model errors in general outputs, the method uses dual-weighted residuals---which are amenable to uncertainty control---as indicators. Experiments illustrate that correcting the reduced-order-model output with this surrogate can improve prediction accuracy by an order of magnitude; this contrasts with existing `multifidelity correction' approaches, which often fail for reduced-order models and suffer from the curse of dimensionality. The proposed error surrogates also lead to a notion of `probabilistic rigor', i.e., the surrogate bounds the error with specified probability

    An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades

    Full text link
    The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory
    corecore