1,278 research outputs found

    Lightweight Synchronization Algorithm with Self-Calibration for Industrial LORA Sensor Networks

    Full text link
    Wireless sensor and actuator networks are gaining momentum in the era of Industrial Internet of Things IIoT. The usage of the close-loop data from sensors in the manufacturing chain is extending the common monitoring scenario of the Wireless Sensors Networks WSN where data were just logged. In this paper we present an accurate timing synchronization for TDMA implemented on the state of art IoT radio, such as LoRa, that is a good solution in industrial environments for its high robustness. Experimental results show how it is possible to modulate the drift correction and keep the synchronization error within the requirements

    IoT-based systems for soil nutrients assessment in horticulture

    Get PDF
    Soil nutrients assessment has great importance in horticulture. Implementation of an information system for horticulture faces many challenges: (i) great spatial variability within farms (e.g., hilly topography); (ii) different soil properties (e.g., different water holding capacity, different content in sand, sit, clay, and soil organic matter, different pH, and different permeability) for different cultivated plants; (iii) different soil nutrient uptake by different cultivated plants; (iv) small size of monoculture; and (v) great variety of farm components, agroecological zone, and socio-economic factors. Advances in information and communication technologies enable creation of low cost, efficient information systems that would improve resources management and increase productivity and sustainability of horticultural farms. We present an information system based on different sensing capability, Internet of Things, and mobile application for horticultural farms. An overview on different techniques and technologies for soil fertility evaluation is also presented. The results obtained in a botanical garden that simulates the diversity of environment and plant diversity of a horticultural farm are discussed considering the challenges identified in the literature and field research. The study provides a theoretical basis and technical support for the development of technologies that enable horticultural farmers to improve resources management.info:eu-repo/semantics/publishedVersio

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    deMETER Soil Monitoring System

    Get PDF
    The purpose of this project is to develop a soil monitoring system that can remotely sense and relay soil conditions back to a user. The deMETER soil probe, Demeter is the Greek goddess of the harvest, is designed to aid hobbyist gardeners, small-scale farms, and nurseries to monitor their dynamic soil conditions and maximize their harvest. The probe is a self-powered system that can monitor the moisture and essential nutrients of the soil profile to determine which areas should receive water and fertilizer. This would significantly cut water and fertilizer waste. The solution will include an embedded system with sensors that provides continuous monitoring of an area of soil. This device will connect wirelessly with another embedded system via an app with an easy user interface. The user interface will show the current moisture and nutrient levels of the soil being monitored and allow for the user to set a moisture/nutrient level setpoint. If the current level of the soil is at, above, or below the setpoint, it will trigger an alarm to notify the user to address the issue

    The role of big data in smart city

    No full text
    The expansion of big data and the evolution of Internet of Things (IoT) technologies have played an important role in the feasibility of smart city initiatives. Big data offer the potential for cities to obtain valuable insights from a large amount of data collected through various sources, and the IoT allows the integration of sensors, radio-frequency identification, and Bluetooth in the real-world environment using highly networked services. The combination of the IoT and big data is an unexplored research area that has brought new and interesting challenges for achieving the goal of future smart cities. These new challenges focus primarily on problems related to business and technology that enable cities to actualize the vision, principles, and requirements of the applications of smart cities by realizing the main smart environment characteristics. In this paper, we describe the existing communication technologies and smart-based applications used within the context of smart cities. The visions of big data analytics to support smart cities are discussed by focusing on how big data can fundamentally change urban populations at different levels. Moreover, a future business model that can manage big data for smart cities is proposed, and the business and technological research challenges are identified. This study can serve as a benchmark for researchers and industries for the future progress and development of smart cities in the context of big data
    corecore