446 research outputs found

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog

    A Learning-Based Trajectory Planning of Multiple UAVs for AoI Minimization in IoT Networks

    Full text link
    Many emerging Internet of Things (IoT) applications rely on information collected by sensor nodes where the freshness of information is an important criterion. \textit{Age of Information} (AoI) is a metric that quantifies information timeliness, i.e., the freshness of the received information or status update. This work considers a setup of deployed sensors in an IoT network, where multiple unmanned aerial vehicles (UAVs) serve as mobile relay nodes between the sensors and the base station. We formulate an optimization problem to jointly plan the UAVs' trajectory, while minimizing the AoI of the received messages. This ensures that the received information at the base station is as fresh as possible. The complex optimization problem is efficiently solved using a deep reinforcement learning (DRL) algorithm. In particular, we propose a deep Q-network, which works as a function approximation to estimate the state-action value function. The proposed scheme is quick to converge and results in a lower AoI than the random walk scheme. Our proposed algorithm reduces the average age by approximately 25%25\% and requires down to 50%50\% less energy when compared to the baseline scheme

    Multi-Objective Optimization for UAV-Assisted Wireless Powered IoT Networks Based on Extended DDPG Algorithm

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-assisted wireless powered IoT network, where a rotary-wing UAV adopts fly-hover-communicate protocol to successively visit IoT devices in demand. During the hovering periods, the UAV works on full-duplex mode to simultaneously collect data from the target device and charge other devices within its coverage. Practical propulsion power consumption model and non-linear energy harvesting model are taken into account. We formulate a multi-objective optimization problem to jointly optimize three objectives: maximization of sum data rate, maximization of total harvested energy and minimization of UAV’s energy consumption over a particular mission period. These three objectives are in conflict with each other partly and weight parameters are given to describe associated importance. Since IoT devices keep gathering information from the physical surrounding environment and their requirements to upload data change dynamically, online path planning of the UAV is required. In this paper, we apply deep reinforcement learning algorithm to achieve online decision. An extended deep deterministic policy gradient (DDPG) algorithm is proposed to learn control policies of UAV over multiple objectives. While training, the agent learns to produce optimal policies under given weights conditions on the basis of achieving timely data collection according to the requirement priority and avoiding devices’ data overflow. The verification results show that the proposed MODDPG (multi-objective DDPG) algorithm achieves joint optimization of three objectives and optimal policies can be adjusted according to weight parameters among optimization objectives

    Resource allocation, user association and placement for uav-assisted communications

    Get PDF
    In the past few years, unmanned aerial vehicle (UAV)-assisted heterogeneous network has attracted significant attention due to its wide range of applications, such as disaster rescue and recovery, ground macro base station (MBS) traffic offloading, communications for temporary events, and data collection for further processing in Internet of Things (IoT). A UAV can act as a flying base station (BS) to quickly recover the communication coverage in the disaster area when the regular terrestrial infrastructure is malfunctioned. The UAV-assisted heterogeneous network can effectively provision line of sight (LoS) communication links and therefore can mitigate potential signal shadowing and blockage. The regulation relaxation and cost reduction of UAVs as well as communication equipment miniaturization make the practical deployment of highly mobile wireless relays more feasible than before. In fact, the 3GPP Rel-16 has included UAV-enabled wireless communications in the new radio standard, aiming to boost capacity and coverage of fifth generation (5G) wireless networks. However, the performance of UAV-assisted communications is greatly affected by the resource allocation scheme, user association policy and the UAV placement strategy. Also, the limited on-board energy and flight time of the UAV poses a great challenge on designing a robust and reliable UAV-enabled IoT network. To maximize the throughput in the UAV-assisted mobile access network, an optimization problem which determines the 3D UAV deployment and resource allocation in a given hotspot area under the constraints of user Quality of Service (QoS) requirements and total available resources is formulated. First, the primal problem is decomposed into two subproblems, i.e., the 3D UAV placement problem and the resource allocation problem. Second, a cyclic iterative algorithm which solves the two sub-problems separately and uses the output of one as the input of the other is proposed. An optimization problem that aims to minimize the average latency ratio of all users is formulated by determining the 3D location of the UAV, the user association and the bandwidth allocation policy between the MBS and the drone base station (DBS) with the constraint of each user’s QoS requirement and total available bandwidth. The formulated problem is a mixed integer non-convex optimization problem, a very challenging and difficult problem. To make formulated problem tractable, it is decomposed into two subproblems, i.e., the user association and bandwidth allocation problem and the 3D DBS placement problem. These two subproblems are alternatively optimized until no performance improvement can be further achieved. To address the challenge of limited on-board battery capacity and flight time, a tethered UAV (TUAV)-assisted heterogeneous network where the aerial UAV is connected with a ground charging station (GCS) through a tether is proposed. The objective of the formulated problem is to maximize the sum rate of all users by jointly optimizing the user association, resource allocation and placement of the GCSs and the aerial UAVs, constrained by each user’s QoS requirement and the total available resource. Since the primal problem is highly non-convex and non-linear and thus challenging to solve, it is decomposed into three subproblems, i.e., the TUAV placement problem, the resource allocation problem and the user association problem. Then, the three sub-problems are alternately and iteratively optimized by using the outputs of the first two as the input for the third. The future work comprises two parts. First, IoT devices usually are generally deployed at remote areas with limited battery capacities and computing power. Therefore, the generated data needs to be offloaded to a more powerful computing server for further processing. Unfortunately, the trajectory design in UAV data collection is generally NP-hard and difficult to obtain the optimal solution. Advances of machine learning (ML) provide a promising alternative approach to solve such problems that cannot be solved by traditional optimization methods. Hence, deep reinforcement learning (DRL) is proposed to be explored to obtain a near optimal solution. Second, the low earth orbit (LEO) satellite networks will revolutionize traditional communication networks with their promising benefits of service continuity, wide-area coverage, and availability for critical communications and emerging applications. However, the integration of LEO satellite networks and terrestrial networks will be another future research endeavor

    Multicell Edge Coverage Enhancement Using Mobile UAV-Relay

    Get PDF
    Unmanned aerial vehicle (UAV)-assisted communication is a promising technology in future wireless communication networks. UAVs can not only help offload data traffic from ground base stations (GBSs) but also improve the Quality of Service (QoS) of cell-edge users (CEUs). In this article, we consider the enhancement of cell-edge communications through a mobile relay, i.e., UAV, in multicell networks. During each transmission period, GBSs first send data to the UAV, and then the UAV forwards its received data to CEUs according to a certain association strategy. In order to maximize the sum rate of all CEUs, we jointly optimize the UAV mobility management, including trajectory, velocity, and acceleration, and association strategy of CEUs to the UAV, subject to minimum rate requirements of CEUs, mobility constraints of the UAV, and causal buffer constraints in practice. To address the mixed-integer nonconvex problem, we transform it into two convex subproblems by applying tight bounds and relaxations. An iterative algorithm is proposed to solve the two subproblems in an alternating manner. Numerical results show that the proposed algorithm achieves higher rates of CEUs as compared with the existing benchmark schemes

    Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for Cyber-Physical System

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-enabled mobile edge network for Cyber-Physical System (CPS), where UAV with fixed-wing or rotary-wing is dispatched to provide communication and mobile edge computing (MEC) services to ground terminals (GTs). To minimize the energy consumption so as to extend the endurance of the UAV, we intend to jointly optimize its 3D trajectory and the task-cache strategies among GTs to save the energies spent on flight propulsion and GT tasks. Such joint trajectory-task-cache problem is difficult to be optimally solved, as it is non-convex and involves multiple constraints. To tackle this problem, we reformulate the optimizing of task offloading and cache into two tractable linear program (LP) problems, and the optimizing of UAV trajectory into three convex Quadratically Constrained Quadratically Program (QCQP) problems on horizontal trajectory, vertical trajectory and flight time of the UAV respectively. Then a block coordinate descent algorithm is proposed to iteratively solve the formed sub-problems through a successive convex optimization (SCO) process. A high-quality sub-optimal solution to the joint problem then will be obtained, after the algorithm converging to a prescribed accuracy. The numerical results show the proposed solution significantly outperforms the baseline solution
    • …
    corecore