688 research outputs found

    Resource Management for Cellular-Assisted Device-to-Device (D2D) Communications

    Get PDF
    Device-to-Device (D2D) communication has become a promising candidate for future wireless communication systems to improve the system spectral efficiency, while reducing the latency and energy consumption of individual communication. With the assistance of cellular network, D2D communications can greatly reduce the transmit distance by utilizing the spatial dispersive nature of ever increasing user devices. Further, substantial spectrum reuse gain can be achieved due to the short transmit distance of D2D communication. It, however, significantly complicates the resource management and performance analysis of D2D communication underlaid cellular networks. Despite an increasing amount of academic attention and industrial interests, how to evaluate the system performance advantages of D2D communications with resource management remains largely unknown. On account of the proximity requirement of D2D communication, the resource management of D2D communication generally consists of admission access control and resource allocation. Resource allocation of cellular assisted D2D communications is very challenging when frequency reuse is considered among multiple D2D pairs within a cell, as intense inter D2D interference is difficult to tackle and generally causes extremely large amount of signaling overheads for channel state information (CSI) acquisition. Hence, the first part of this thesis is devoted to the resource allocation of cellular assisted D2D communication and the performance analysis. A novel resource allocation scheme for cellular assisted D2D communication is developed with low signaling overhead, while maintaining high spectral efficiency. By utilizing the spatial dispersive nature of D2D pairs, a geography-based sub-cell division strategy is proposed to group the D2D pairs into multiple disjoint clusters, and sub-cell resource allocation is performed independently for the D2D pairs within each sub-cell without the need of any prior knowledge of inter D2D interference. Under the proposed resource allocation scheme, tractable approximation for the inter D2D interference modeling is obtained and a computationally efficient expression for the average ergodic sum capacity of the cell is derived. The expression further allows us to obtain the optimal number of sub-cells that maximizes the average ergodic sum capacity of the cell. It is shown that with small CSI feedback, the system capacity/spectral efficiency can be improved significantly by adopting the proposed resource allocation scheme, especially in dense D2D deployment scenario. The investigation of use cases for cellular assisted D2D communication is another important topic which has direct effect on the performance evaluation of D2D communication. Thanks to the spatial dispersive nature of devices, D2D communication can be utilized to harvest the vast amount of the idle computation power and storage space distributed at the devices, which yields sufficient capacities for performing computation-intensive and latency-critical tasks. Therefore, the second part of this thesis focuses on the D2D communication assisted Mobile Edge Computing (MEC) network. The admission access control of D2D communication is determined by both disciplines of mobile computing and wireless communications. Specifically, the energy minimization problem in D2D assisted MEC networks is addressed with the latency constraint of each individual task and the computing resource constraint of each computing entity. The energy minimization problem is formed as a two-stage optimization problem. At the first stage, an initial feasibility problem is formed to maximize the number of executed tasks, and the global energy minimization problem is tackled in the second stage while maintaining the maximum number of executed tasks. Both of the optimization problems in two stages are NP-hard, therefore a low-complexity algorithm is developed for the initial feasibility problem with a supplementary algorithm further proposed for energy minimization. Simulation results demonstrate the near-optimal performance of the proposed algorithms and the fact that the number of executed tasks is greatly increased and the energy consumption per executed task is significantly reduced with the assistance of D2D communication in MEC networks, especially in dense user scenario

    Energy Minimization in D2D-Assisted Cache-Enabled Internet of Things: A Deep Reinforcement Learning Approach

    Get PDF
    Mobile edge caching (MEC) and device-to-device (D2D) communications are two potential technologies to resolve traffic overload problems in the Internet of Things. Previous works usually investigate them separately with MEC for traffic offloading and D2D for information transmission. In this article, a joint framework consisting of MEC and cache-enabled D2D communications is proposed to minimize the energy cost of systematic traffic transmission, where file popularity and user preference are the critical criteria for small base stations (SBSs) and user devices, respectively. Under this framework, we propose a novel caching strategy, where the Markov decision process is applied to model the requesting behaviors. A novel scheme based on reinforcement learning (RL) is proposed to reveal the popularity of files as well as users' preference. In particular, a Q-learning algorithm and a deep Q-network algorithm are, respectively, applied to user devices and the SBS due to different complexities of status. To save the energy cost of systematic traffic transmission, users acquire partial traffic through D2D communications based on the cached contents and user distribution. Taking the memory limits, D2D available files, and status changing into consideration, the proposed RL algorithm enables user devices and the SBS to prefetch the optimal files while learning, which can reduce the energy cost significantly. Simulation results demonstrate the superior energy saving performance of the proposed RL-based algorithm over other existing methods under various conditions

    Edge-Caching Wireless Networks: Performance Analysis and Optimization

    Get PDF
    Edge-caching has received much attention as an efficient technique to reduce delivery latency and network congestion during peak-traffic times by bringing data closer to end users. Existing works usually design caching algorithms separately from physical layer design. In this paper, we analyse edge-caching wireless networks by taking into account the caching capability when designing the signal transmission. Particularly, we investigate multi-layer caching where both base station (BS) and users are capable of storing content data in their local cache and analyse the performance of edge-caching wireless networks under two notable uncoded and coded caching strategies. Firstly, we propose a coded caching strategy that is applied to arbitrary values of cache size. The required backhaul and access rates are derived as a function of the BS and user cache size. Secondly, closed-form expressions for the system energy efficiency (EE) corresponding to the two caching methods are derived. Based on the derived formulas, the system EE is maximized via precoding vectors design and optimization while satisfying a predefined user request rate. Thirdly, two optimization problems are proposed to minimize the content delivery time for the two caching strategies. Finally, numerical results are presented to verify the effectiveness of the two caching methods.Comment: to appear in IEEE Trans. Wireless Commu
    • …
    corecore