615 research outputs found

    Extruder for food product (otak–otak) with heater and roll cutter

    Get PDF
    Food extrusion is a form of extrusion used in food industries. It is a process by which a set of mixed ingredients are forced through an opening in a perforated plate or die with a design specific to the food, and is then cut to a specified size by blades [1]. Summary of the invention principal objects of the present invention are to provide a machine capable of continuously producing food products having an’ extruded filler material of meat or similarity and an extruded outer covering of a moldable food product, such as otak-otak, that completely envelopes the filler material

    A transition from manual to Intelligent Automated power system operation -A Indicative Review

    Get PDF
    This paper reviews the transition of the power system operation from the traditional manual mode of power system operations to the level where automation using Internet of Things (IOT) and intelligence using Artificial Intelligence (AI) is implemented. To make the review paper brief only indicative papers are chosen to cover multiple power system operation based implementation. Care is taken there is lesser repeatation of similar technology or application be reviewed. The indicative review is to take only a representative literature to bypass scrutinizing multiple literatures with similar objectives and methods. A brief review of the slow transition from the traditional to the intelligent automated way of carrying out power system operations like the energy audit, load forecasting, fault detection, power quality control, smart grid technology, islanding detection, energy management etc is discussed .The Mechanical Engineering Perspective on the basis of applications would be noticed in the paper although the energy management and power delivery concepts are electrical

    Design and Implementation of Fuzzy Controller for Non-Linear Thermally Insulated MIMO Greenhouse Building Utilizing Weather Conditions and Ground Temperature

    Get PDF
    The increased demand of electricity and water consumption for cooling and heating processes together with the continuous increase in earth temperature due to greenhouse gases emission urged the utilization of sustainable, affordable and clean energy resources. Globally, the biggest amount of water is consumed for agricultural purposes. Domestically, in Abu Dhabi Emirate, the agriculture sector consumes over 50% of the supplied water. Part of this consumption is due to the evaporative cooling approach that is typically used in cooling greenhouses. This approach utilizes a large amount of water and energy to maintain the greenhouse temperature within the desired range. Ground Heat-Exchanger is an environmentally-friendly solution used for heating or cooling applications. It is based on seasonal temperature difference between the ground and the ambient which varies with depth. As depth of ground increases, the temperature fluctuation decreases because of the soil high thermal inertia and the time lag in temperature fluctuation between the surface and the ground. The aim of this thesis is to design a control system using fuzzy logic controller to study the feasibility of utilizing weather conditions and soil temperature in cooling or heating processes of a special type of greenhouses. The proposed control system takes a decision of either utilizing the outside weather conditions or using the soil temperature. The study is conducted on a thermally insulated greenhouse system equipped with ground-to-air heat exchanger, actuated windows, fans, and sensors and the proposed controller performance is compared to a logical and conventional ON/OFF controllers. Results show the proposed control system is capable of maintaining the greenhouse temperature within the desired range for most of the day hours in winter utilizing only the weather and soil temperatures. However, when the temperature is extremely hot, especially in summer, the ground heat exchanger can be only used for pre-cooling with a capability of reducing the ambient temperature of about 6ºC on average. In such extremely hot periods, an auxiliary cooling unit has to be deployed for further cooling. In addition, results reveal that fuzzy controller consumes less power than the logical and the ON/OFF controller when operating the system actuators

    Toward Holistic Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles in Heavy-Duty Applications

    Get PDF
    The increasing need to slow down climate change for environmental protection demands further advancements toward regenerative energy and sustainable mobility. While individual mobility applications are assumed to be satisfied with improving battery electric vehicles (BEVs), the growing sector of freight transport and heavy-duty applications requires alternative solutions to meet the requirements of long ranges and high payloads. Fuel cell hybrid electric vehicles (FCHEVs) emerge as a capable technology for high-energy applications. This technology comprises a fuel cell system (FCS) for energy supply combined with buffering energy storages, such as batteries or ultracapacitors. In this article, recent successful developments regarding FCHEVs in various heavy-duty applications are presented. Subsequently, an overview of the FCHEV drivetrain, its main components, and different topologies with an emphasis on heavy-duty trucks is given. In order to enable system layout optimization and energy management strategy (EMS) design, functionality and modeling approaches for the FCS, battery, ultracapacitor, and further relevant subsystems are briefly described. Afterward, common methodologies for EMS are structured, presenting a new taxonomy for dynamic optimization-based EMS from a control engineering perspective. Finally, the findings lead to a guideline toward holistic EMS, encouraging the co-optimization of system design, and EMS development for FCHEVs. For the EMS, we propose a layered model predictive control (MPC) approach, which takes velocity planning, the mitigation of degradation effects, and the auxiliaries into account simultaneously

    Design of an Online Optimisation Tool for Smart Home Heating Control

    Get PDF
    The performance of model predictive smart home heating control (SHHC) heavily depends on the accuracy of the initial setup for individual building characteristics. Since owners or renters of residential buildings are predominantly not experts, users’ acceptance of SHHC requires ease of use in the setup and minimal user intervention (e.g. only declaration of preferences), but at the same time high reliability of the initial parameter settings and flexibility to handle different preferences. In contrast, the training time of self-learning SHHC (e.g. based on artificial neural networks) to reach a reliable control status could conflict with the users’ request for comfortable heating from the very beginning. Dealing with this trade-off, this paper follows the tradition of design science research and presents a prototype of an online optimisation tool (OOT) for SHHC. The OOT is multi objective (e.g. minimising lifecycle energy (cost) or carbon emissions) under constraints such as thermal comfort. While the OOT is based on a discrete dynamic model, its self-adaptation is accelerated by a database of physically simulated characteristic buildings, which allows parameter setting at the beginning by a similarity measurement. The OOT artefact provides a base for empirically testing advantages of different SHHC design alternatives

    IEEE Access Special Section Editorial: Energy Management in Buildings

    Get PDF
    Energy usage in buildings has become a critical concern globally, and with that, the concept of energy management in buildings has emerged to help tackle these challenges. The energy management system provides a new opportunity for the building's energy requirements, and is an essential method for energy service, i.e., energy saving, consumption,

    Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions

    Get PDF
    Natural ventilation is gaining more attention from architects and engineers as an alternative way of cooling and ventilating indoor spaces. Based on building types, it could save between 13 and 40% of the building cooling energy use. However, this needs to be implemented and operated with a well-designed and integrated control system to avoid triggering discomfort for occupants. This paper seeks to review, discuss, and contribute to existing knowledge on the application of control systems and optimisation theories of naturally ventilated buildings to produce the best performance. The study finally presents an outstanding theoretical context and practical implementation for researchers seeking to explore the use of intelligent controls for optimal output in the pursuit to help solve intricate control problems in the building industry and suggests advanced control systems such as fuzzy logic control as an effective control strategy for an integrated control of ventilation, heating and cooling systems

    A survey on the evolution of the notion of context-awareness

    Get PDF
    The notion of Context has been considered for a long time in different areas of Computer Science. This article considers the use of context-based reasoning from the earlier perspective of AI as well as the newer developments in Ubiquitous Computing. Both communities have been somehow interested in the potential of context-reasoning to support real-time meaningful reactions from systems. We explain how the concept evolved in each of these different approaches. We found initially each of them considered this topic quite independently and separated from each other, however latest developments have started to show signs of cross-fertilization amongst these areas. The aim of our survey is to provide an understanding on the way context and context-reasoning were approached, to show that work in each area is complementary, and to highlight there are positive synergies arising amongst them. The overarching goal of this article is to encourage further and longer-term synergies between those interested in further understanding and using context-based reasoning
    corecore