71,971 research outputs found

    GreenDelivery: Proactive Content Caching and Push with Energy-Harvesting-based Small Cells

    Full text link
    The explosive growth of mobile multimedia traffic calls for scalable wireless access with high quality of service and low energy cost. Motivated by the emerging energy harvesting communications, and the trend of caching multimedia contents at the access edge and user terminals, we propose a paradigm-shift framework, namely GreenDelivery, enabling efficient content delivery with energy harvesting based small cells. To resolve the two-dimensional randomness of energy harvesting and content request arrivals, proactive caching and push are jointly optimized, with respect to the content popularity distribution and battery states. We thus develop a novel way of understanding the interplay between content and energy over time and space. Case studies are provided to show the substantial reduction of macro BS activities, and thus the related energy consumption from the power grid is reduced. Research issues of the proposed GreenDelivery framework are also discussed.Comment: 15 pages, 5 figures, accepted by IEEE Communications Magazin

    Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications

    Get PDF
    This is the peer reviewed version of the following article: Vazquez-Gallego F, Tuset-Peiró P, Alonso L, Alonso-Zarate J. Combining distributed queuing with energy harvesting to enable perpetual distributed data collection applications. Trans Emerging Tel Tech. 2017;e3195 , which has been published in final form at https://doi.org/10.1002/ett.3195. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper presents, models, and evaluates energy harvesting–aware distributed queuing (EH-DQ), a novel medium access control protocol that combines distributed queuing with energy harvesting (EH) to address data collection applications in industrial scenarios using long-range and low-power wireless communication technologies. We model the medium access control protocol operation using a Markov chain and evaluate its ability to successfully transmit data without depleting the energy stored at the end devices. In particular, we compare the performance and energy consumption of EH-DQ with that of time-division multiple access (TDMA), which provides an upper limit in data delivery, and EH-aware reservation dynamic frame slotted ALOHA, which is an improved variation of frame slotted ALOHA. To evaluate the performance of these protocols, we use 2 performance metrics: delivery ratio and time efficiency. Delivery ratio measures the ability to successfully transmit data without depleting the energy reserves, whereas time efficiency measures the amount of data that can be transmitted in a certain amount of time. Results show that EH-DQ and TDMA perform close to the optimum in data delivery and outperform EH-aware reservation dynamic frame slotted ALOHA in data delivery and time efficiency. Compared to TDMA, the time efficiency of EH-DQ is insensitive to the amount of harvested energy, making it more suitable for energy-constrained applications. Moreover, compared to TDMA, EH-DQ does not require updated network information to maintain a collision-free schedule, making it suitable for very dynamic networks.Peer ReviewedPostprint (author's final draft

    Design of Low-Cost Energy Harvesting and Delivery Systems for Self-Powered Devices: Application to Authentication IC

    Get PDF
    This thesis investigates the development of low-cost energy harvesting and delivery systems for low-power low-duty-cycle devices. Initially, we begin by designing a power management scheme for on-demand power delivery. The baseline implementation is also used to identify critical challenges for low-power energy harvesting. We further propose a robust self-powered energy harvesting and delivery system (EHDS) design as a solution to achieve energy autonomy in standalone systems. The design demonstrates a complete ecosystem for low-overhead pulse-frequency modulated (PFM) harvesting while reducing harvesting window confinement and overall implementation footprint. Two transient-based models are developed for improved accuracy during design space exploration and optimization for both PFM power conversion and energy harvesting. Finally, a low-power authentication IC is demonstrated and projected designs for self-powered System-on-Chips (SoCs) are presented. The proposed designs are proto-typed in two test-chips in a 65nm CMOS process and measurement data showcase improved performance in terms of battery power, cold-start duration, passives (inductance and capacitance) needed, and end-to-end harvesting/conversion efficiency.Ph.D

    System for energy harvesting and/or generation, storage, and delivery

    Get PDF
    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications

    A Novel IEEE 802.11 Power Save Mechanism for Energy Harvesting Motivated Networks

    Get PDF
    The spread of wirelessly connected computing sensors and devices and hybrid networks are leading to the emergence of an Internet of Things (IoT), where a myriad of multi-scale sensors and devices are seamlessly blended for ubiquitous computing and communication. However, the communication operations of wireless devices are often limited by the size and lifetime of the batteries because of the portability and mobility. To reduce energy consumption during wireless communication, the IEEE 802.11 standard specifies a power management scheme, called Power Saving Mechanism (PSM), for IEEE 802.11 devices. However, the PSM of IEEE 802.11 was originally designed for battery-supported devices in single-hop Wireless Local Area Networks (WLANs), and it does not consider devices that are equipped with rechargeable batteries and energy harvesting capability. In this thesis, the original PSM is extended by incorporating with intermittent energy harvesting in the IEEE 802.11 Medium Access Control (MAC) layer specification, and a novel energy harvesting aware power saving mechanism, called EH-PSM, is proposed. The basic idea of EH-PSM is to assign a longer contention window to a device in energy harvesting mode than that of a device in normal mode to make the latter access the wireless medium earlier and quicker. In addition, the device in energy harvesting mode stays active as far as it harvests energy and updates the access point of its harvesting mode to enable itself to be ready for receiving and sending packets or overhearing any on-going communication. The proposed scheme is evaluated through extensive simulation experiments using OMNeT++ and its performance is compared with the original PSM. The simulation results indicate that the proposed scheme can not only improve the packet delivery ratio and throughput but also reduce the packet delivery latenc

    Radio frequency energy harvesting for autonomous systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyRadio Frequency Energy Harvesting (RFEH) is a technology which enables wireless power delivery to multiple devices from a single energy source. The main components of this technology are the antenna and the rectifying circuitry that converts the RF signal into DC power. The devices which are using Radio Frequency (RF) power may be integrated into Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), biomedical implants, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), smart meters, telemetry systems and may even be used to charge mobile phones. Aside from autonomous systems such as WSNs and RFID, the multi-billion portable electronics market – from GSM phones to MP3 players – would be an attractive application for RF energy harvesting if the power requirements are met. To investigate the potential for ambient RFEH, several RF site surveys were conducted around London. Using the results from these surveys, various harvesters were designed and tested for different frequency bands from the RF sources with the highest power density within the Medium Wave (MW), ultra- and super-high (UHF and SHF) frequency spectrum. Prototypes were fabricated and tested for each of the bands and proved that a large urban area around Brookmans park radio centre is suitable location for harvesting ambient RF energy. Although the RFEH offers very good efficiency performance, if a single antenna is considered, the maximum power delivered is generally not enough to power all the elements of an autonomous system. In this thesis we present techniques for optimising the power efficiency of the RFEH device under demanding conditions such as ultra-low power densities, arbitrary polarisation and diverse load impedances. Subsequently, an energy harvesting ferrite rod rectenna is designed to power up a wireless sensor and its transmitter, generating dedicated Medium Wave (MW) signals in an indoor environment. Harvested power management, application scenarios and practical results are also presented
    • …
    corecore