1,270 research outputs found

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Density Controlled Divide-and-Rule Scheme for Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    Cluster based routing technique is most popular routing technique in Wireless Sensor Networks (WSNs). Due to varying need of WSN applications efficient energy utilization in routing protocols is still a potential area of research. In this research work we introduced a new energy efficient cluster based routing technique. In this technique we tried to overcome the problem of coverage hole and energy hole. In our technique we controlled these problems by introducing density controlled uniform distribution of nodes and fixing optimum number of Cluster Heads (CHs) in each round. Finally we verified our technique by experimental results of MATLAB simulations.Comment: 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE2013), Regina, Saskatchewan, Canada, 201

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance
    • …
    corecore