936 research outputs found

    Joint Optimal Software Caching, Computation Offloading and Communications Resource Allocation for Mobile Edge Computing

    Full text link
    As software may be used by multiple users, caching popular software at the wireless edge has been considered to save computation and communications resources for mobile edge computing (MEC). However, fetching uncached software from the core network and multicasting popular software to users have so far been ignored. Thus, existing design is incomplete and less practical. In this paper, we propose a joint caching, computation and communications mechanism which involves software fetching, caching and multicasting, as well as task input data uploading, task executing (with non-negligible time duration) and computation result downloading, and mathematically characterize it. Then, we optimize the joint caching, offloading and time allocation policy to minimize the weighted sum energy consumption subject to the caching and deadline constraints. The problem is a challenging two-timescale mixed integer nonlinear programming (MINLP) problem, and is NP-hard in general. We convert it into an equivalent convex MINLP problem by using some appropriate transformations and propose two low-complexity algorithms to obtain suboptimal solutions of the original non-convex MINLP problem. Specifically, the first suboptimal solution is obtained by solving a relaxed convex problem using the consensus alternating direction method of multipliers (ADMM), and then rounding its optimal solution properly. The second suboptimal solution is proposed by obtaining a stationary point of an equivalent difference of convex (DC) problem using the penalty convex-concave procedure (Penalty-CCP) and ADMM. Finally, by numerical results, we show that the proposed solutions outperform existing schemes and reveal their advantages in efficiently utilizing storage, computation and communications resources.Comment: To appear in IEEE Trans. Veh. Technol., 202

    Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

    Full text link
    Along with the rapid developments in communication technologies and the surge in the use of mobile devices, a brand-new computation paradigm, Edge Computing, is surging in popularity. Meanwhile, Artificial Intelligence (AI) applications are thriving with the breakthroughs in deep learning and the many improvements in hardware architectures. Billions of data bytes, generated at the network edge, put massive demands on data processing and structural optimization. Thus, there exists a strong demand to integrate Edge Computing and AI, which gives birth to Edge Intelligence. In this paper, we divide Edge Intelligence into AI for edge (Intelligence-enabled Edge Computing) and AI on edge (Artificial Intelligence on Edge). The former focuses on providing more optimal solutions to key problems in Edge Computing with the help of popular and effective AI technologies while the latter studies how to carry out the entire process of building AI models, i.e., model training and inference, on the edge. This paper provides insights into this new inter-disciplinary field from a broader perspective. It discusses the core concepts and the research road-map, which should provide the necessary background for potential future research initiatives in Edge Intelligence.Comment: 13 pages, 3 figure

    Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning

    Full text link
    Due to the ever-increasing popularity of resource-hungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they suffer from limitations in computational and radio resources, which calls for fair efficient resource management in the MEC servers. The problem is however challenging due to the ultra-high density, distributed nature, and intrinsic randomness of next generation wireless networks. In this article, we focus on the application of game theory and reinforcement learning for efficient distributed resource management in MEC, in particular, for computation offloading. We briefly review the cutting-edge research and discuss future challenges. Furthermore, we develop a game-theoretical model for energy-efficient distributed edge server activation and study several learning techniques. Numerical results are provided to illustrate the performance of these distributed learning techniques. Also, open research issues in the context of resource management in MEC servers are discussed

    A Parallel Optimal Task Allocation Mechanism for Large-Scale Mobile Edge Computing

    Full text link
    We consider the problem of intelligent and efficient task allocation mechanism in large-scale mobile edge computing (MEC), which can reduce delay and energy consumption in a parallel and distributed optimization. In this paper, we study the joint optimization model to consider cooperative task management mechanism among mobile terminals (MT), macro cell base station (MBS), and multiple small cell base station (SBS) for large-scale MEC applications. We propose a parallel multi-block Alternating Direction Method of Multipliers (ADMM) based method to model both requirements of low delay and low energy consumption in the MEC system which formulates the task allocation under those requirements as a nonlinear 0-1 integer programming problem. To solve the optimization problem, we develop an efficient combination of conjugate gradient, Newton and linear search techniques based algorithm with Logarithmic Smoothing (for global variables updating) and the Cyclic Block coordinate Gradient Projection (CBGP, for local variables updating) methods, which can guarantee convergence and reduce computational complexity with a good scalability. Numerical results demonstrate the effectiveness of the proposed mechanism and it can effectively reduce delay and energy consumption for a large-scale MEC system.Comment: 15 pages,4 figures, resource management for large-scale MEC. arXiv admin note: text overlap with arXiv:2003.1284

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Heterogeneous Services Provisioning in Small Cell Networks with Cache and Mobile Edge Computing

    Full text link
    In the area of full duplex (FD)-enabled small cell networks, limited works have been done on consideration of cache and mobile edge communication (MEC). In this paper, a virtual FD-enabled small cell network with cache and MEC is investigated for two heterogeneous services, high-data-rate service and computation-sensitive service. In our proposed scheme, content caching and FD communication are closely combined to offer high-data-rate services without the cost of backhaul resource. Computing offloading is conducted to guarantee the delay requirement of users. Then we formulate a virtual resource allocation problem, in which user association, power control, caching and computing offloading policies and resource allocation are jointly considered. Since the original problem is a mixed combinatorial problem, necessary variables relaxation and reformulation are conducted to transfer the original problem to a convex problem. Furthermore, alternating direction method of multipliers (ADMM) algorithm is adopted to obtain the optimal solution. Finally, extensive simulations are conducted with different system configurations to verify the effectiveness of the proposed scheme

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    Stacked Auto Encoder Based Deep Reinforcement Learning for Online Resource Scheduling in Large-Scale MEC Networks

    Get PDF
    An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet-of-Things (IoT) users, by optimizing offloading decision, transmission power, and resource allocation in the large-scale mobile-edge computing (MEC) system. Toward this end, a deep reinforcement learning (DRL)-based solution is proposed, which includes the following components. First, a related and regularized stacked autoencoder (2r-SAE) with unsupervised learning is applied to perform data compression and representation for high-dimensional channel quality information (CQI) data, which can reduce the state space for DRL. Second, we present an adaptive simulated annealing approach (ASA) as the action search method of DRL, in which an adaptive h -mutation is used to guide the search direction and an adaptive iteration is proposed to enhance the search efficiency during the DRL process. Third, a preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy. The numerical results are provided to demonstrate that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computational time compared with existing benchmarks

    Mobile Edge Computing for Future Internet-of-Things

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Integrating sensors, the Internet, and wireless systems, Internet-of-Things (IoT) provides a new paradigm of ubiquitous connectivity and pervasive intelligence. The key enabling technology underlying IoT is mobile edge computing (MEC), which is anticipated to realize and reap the promising benefits of IoT applications by placing various cloud resources, such as computing and storage resources closer to smart devices and objects. Challenges of designing efficient and scalable MEC platforms for future IoT arise from the physical limitations of computing and battery resources of IoT devices, heterogeneity of computing and wireless communication capabilities of IoT networks, large volume of data arrivals and massive number connections, and large-scale data storage and delivery across the edge network. To address these challenges, this thesis proposes four efficient and scalable task offloading and cooperative caching approaches are proposed. Firstly, for the multi-user single-cell MEC scenario, the base station (BS) can only have outdated knowledge of IoT device channel conditions due to the time-varying nature of practical wireless channels. To this end, a hybrid learning approach is proposed to optimize the real-time local processing and predictive computation offloading decisions in a distributed manner. Secondly, for the multi-user multi-cell MEC scenario, an energy-efficient resource management approach is developed based on distributed online learning to tackle the heterogeneity of computing and wireless transmission capabilities of edge servers and IoT devices. The proposed approach optimizes the decisions on task offloading, processing, and result delivery between edge servers and IoT devices to minimize the time-average energy consumption of MEC. Thirdly, for the computing resource allocation under large-scale network, a distributed online collaborative computing approach is proposed based on Lyapunov optimization for data analysis in IoT application to minimize the time-average energy consumption of network. Finally, for the storage resource allocation under large-scale network, a distributed IoT data delivery approach based on online learning is proposed for caching application in mobile applications. A new profitable cooperative region is established for every IoT data request admitted at an edge server, to avoid invalid request dispatching

    Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing

    Full text link
    With the breakthroughs in deep learning, the recent years have witnessed a booming of artificial intelligence (AI) applications and services, spanning from personal assistant to recommendation systems to video/audio surveillance. More recently, with the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the AI frontiers to the network edge so as to fully unleash the potential of the edge big data. To meet this demand, edge computing, an emerging paradigm that pushes computing tasks and services from the network core to the network edge, has been widely recognized as a promising solution. The resulted new inter-discipline, edge AI or edge intelligence, is beginning to receive a tremendous amount of interest. However, research on edge intelligence is still in its infancy stage, and a dedicated venue for exchanging the recent advances of edge intelligence is highly desired by both the computer system and artificial intelligence communities. To this end, we conduct a comprehensive survey of the recent research efforts on edge intelligence. Specifically, we first review the background and motivation for artificial intelligence running at the network edge. We then provide an overview of the overarching architectures, frameworks and emerging key technologies for deep learning model towards training/inference at the network edge. Finally, we discuss future research opportunities on edge intelligence. We believe that this survey will elicit escalating attentions, stimulate fruitful discussions and inspire further research ideas on edge intelligence.Comment: Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing," Proceedings of the IEE
    corecore