2,452 research outputs found

    Energy efficient scheduling and allocation of tasks in sensor cloud

    Get PDF
    Wireless Sensor Network (WSN) is a class of ad hoc networks that has capability of self-organizing, in-network data processing, and unattended environment monitoring. Sensor-cloud is a cloud of heterogeneous WSNs. It is attractive as it can change the computation paradigm of wireless sensor networks. In Sensor-Cloud, to gain profit from underutilized WSNs, multiple WSN owners collaborate to provide a cloud service. Sensor Cloud users can simply rent the sensing services which eliminates the cost of ownership, enabling the usage of large scale sensor networks become affordable. The nature of Sensor-Cloud enables resource sharing and allows virtual sensors to be scaled up or down. It abstracts different platforms hence giving the impression of a homogeneous network. Further in multi-application environment, users of different applications may require data based on different needs. Hence scheduling scheme in WSNs is required which serves maximum users of various applications. We have proposed a scheduling scheme suitable for the multiple applications in Sensor Cloud. Scheduling scheme is based on TDMA which considers fine granularity of tasks. The performance evaluation shows the better response time, throughput and overall energy consumption as compared to the base case we developed. On the other hand, to minimize the energy consumption in WSN, we design an allocation scheme. In Sensor Cloud, we consider sparsely and densely deployed WSNs working together. Also, in a WSN there might be sparsely and densely deployed zones. Based on spatial correlation and with the help of Voronoi diagram, we turn on minimum number of sensors hence increasing WSN lifetime and covering almost 100 percent area. The performance evaluation of allocation scheme shows energy efficiency by selecting fewer nodes in comparison to other work --Abstract, page iv

    Optimal Assignment of Augmented Reality Tasks for Edge-Based Variable Infrastructures

    Get PDF
    In the last few years, the number of devices connected to the Internet has increased considerably; so has the data interchanged between these devices and the Cloud, as well as energy consumption and the risk of network congestion. The problem can be alleviated by reducing communication between Internet-of-Things devices and the Cloud. Recent paradigms, such as Edge Computing and Fog Computing, propose to move data processing tasks from the Cloud to nearby devices to where data is produced or consumed. One of the main challenges of these paradigms is to cope with the heterogeneity of the infrastructures where tasks can be offloaded. This paper presents a solution for the optimal allocation of computational tasks to edge devices, with the aim of minimizing the energy consumption of the overall application. The heterogeneity is represented and managed by using Feature Models, widely employed in Software Product Lines. Given the application and infrastructure configurations, our Optimal Tasks Assignment Framework generates the optimal task allocation and resources assignment. The resultant deployment represents the most energy efficient configuration at load-time, without compromising the user experience. The scalability and energy saving of the approach are evaluated in the domain of augmented reality applicationsHADAS TIN2015-64841-R (co-funded by FEDER funds), TASOVA MCIU-AEI TIN2017-90644-REDT, MEDEA RTI2018-099213-B-I00 (co-funded by FEDER funds) LEIA UMA18-FEDERJA-157 (co-funded by FEDER funds) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Novel online data allocation for hybrid memories on tele-health systems

    Full text link
    [EN] The developments of wearable devices such as Body Sensor Networks (BSNs) have greatly improved the capability of tele-health industry. Large amount of data will be collected from every local BSN in real-time. These data is processed by embedded systems including smart phones and tablets. After that, the data will be transferred to distributed storage systems for further processing. Traditional on-chip SRAMs cause critical power leakage issues and occupy relatively large chip areas. Therefore, hybrid memories, which combine volatile memories with non-volatile memories, are widely adopted in reducing the latency and energy cost on multi-core systems. However, most of the current works are about static data allocation for hybrid memories. Those mechanisms cannot achieve better data placement in real-time. Hence, we propose online data allocation for hybrid memories on embedded tele-health systems. In this paper, we present dynamic programming and heuristic approaches. Considering the difference between profiled data access and actual data access, the proposed algorithms use a feedback mechanism to improve the accuracy of data allocation during runtime. Experimental results demonstrate that, compared to greedy approaches, the proposed algorithms achieve 20%-40% performance improvement based on different benchmarks. (C) 2016 Elsevier B.V. All rights reserved.This work is supported by NSF CNS-1457506 and NSF CNS-1359557.Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). Novel online data allocation for hybrid memories on tele-health systems. Microprocessors and Microsystems. 52:391-400. https://doi.org/10.1016/j.micpro.2016.08.003S3914005

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    corecore