4,267 research outputs found

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    An energy-aware distributed algorithm for virtual backbone in wireless sensor network with different transmission range

    Get PDF
    Since there is no fixed infrastructure or centralized management in Wireless Sensor Networks (WSNs), a Connected Dominating Set(CDS) has been proposed as a virtual backbone is efficient. A virtual backbone plays a major role in routing, broadcasting, coverage andactivity scheduling. Wireless sensor networks to form a CDS usually by UDG (Unit Disk Graph) models that are used in this model, allnodes have the same message, but this article UDG model instead of a version that is closer to reality called DGB (Disk Graph withBidirectional links) is used in which nodes can adopt different transmission intervals. In many applications, to reduce overhead, increasenetwork lifetime, and so on, to find the MCDS (minimum connected dominating set) is desirable, but the point is that MCDS UDG modelsand DGB, the problem is NP-hard. In addition to the analysis of algorithms, the new algorithm will provide and the efficiency of thealgorithm, especially in terms of energy consumption, through theoretical analysis and simulation algorithms are available to be checked out

    A reliable design of Wireless Body Area Networks

    Get PDF
    International audienceIn this paper, we propose a reliable topology design and provisioning approach for Wireless Body Area Networks (named RTDP-WBAN) that takes into account the mobility of the patient while guaranteeing a reliable data delivery required to support healthcare applications' needs. To do so, we first propose a 3D coordinate system able to calculate the coordinates of relay-sensor nodes in different body postures and movements. This system uses a 3D-model of a standard human body and a specific set of node positions with stable communication links, forming a virtual backbone. Next, we investigate the optimal relay nodes positioning jointly with the reliable and cost-effective data routing for different body postures and movements. Therefore, we use an Integer Linear Programming (ILP) model, that is able to find the optimal number and locations of relay nodes and calculate the optimal data routing from sensors and relays towards the sink, minimizing both the network setup cost and the energy consumption. We solve the model in dynamic WBAN (Stand, Sit and Walk) scenarios, and compare its performance to other relaying approaches. Experiment results showed that our realistic and dynamic WBAN design approach significantly improves results obtained in the literature, in terms of reliability, energy-consumption and number of relays deployed on the body
    • …
    corecore