784 research outputs found

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Selective Green Device Discovery for Device-to-Device Communication

    Get PDF
    The D2D communication is expected to improve devices’ energy-efficiency, which has become a major requirement of the future wireless network. Before the D2D communication can be performed, the device discovery between devices must be done. The previous works usually only assumed one mode of device discovery, i.e. either use network-assisted (with network supervision) or independent (without network supervision) device. Therefore, we propose a selective device discovery for device-to-device (D2D) communication that can utilize both device discovery modes and maintain devices’ energy-efficiency. Different from previous works, our proposed method selects the best device discovery mode to get the best energy-efficiency. Moreover, to further improve the energy-efficiency, our proposed method also deployed in D2D cluster with multiple cluster heads. The proposed method selects the most suitable mode using thresholds (cluster energy consumption and new device acceptance) and cluster energy expectation. Our experiment result indicates that the proposed method provides lowest energy consumption per new accepted device while compared with schemes with full network-assisted and independent device discovery in low numbers of new device arrival (for the number of new devices arrival = 1 ~ 3)

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Energy-Efficiency Maximization for a WPT-D2D Pair in a MISO-NOMA Downlink Network

    Full text link
    The combination of non-orthogonal multiple access (NOMA) and wireless power transfer (WPT) is a promising solution to enhance the energy efficiency of Device-to-Device (D2D) enabled wireless communication networks. In this paper, we focus on maximizing the energy efficiency of a WPT-D2D pair in a multiple-input single-output (MISO)-NOMA downlink network, by alternatively optimizing the beamforming vectors of the base station (BS) and the time switching coefficient of the WPT assisted D2D transmitter. The formulated energy efficiency maximization problem is non-convex due to the highly coupled variables. To efficiently address the non-convex problem, we first divide it into two subproblems. Afterwards, an alternating algorithm based on the Dinkelbach method and quadratic transform is proposed to solve the two subproblems iteratively. To verify the proposed alternating algorithm's accuracy, partial exhaustive search algorithm is proposed as a benchmark. We also utilize a deep reinforcement learning (DRL) method to solve the non-convex problem and compare it with the proposed algorithm. To demonstrate the respective superiority of the proposed algorithm and DRL-based method, simulations are performed for two scenarios of perfect and imperfect channel state information (CSI). Simulation results are provided to compare NOMA and orthogonal multiple access (OMA), which demonstrate the superior performance of energy efficiency of the NOMA scheme

    5G Cellular: Key Enabling Technologies and Research Challenges

    Full text link
    The evolving fifth generation (5G) cellular wireless networks are envisioned to provide higher data rates, enhanced end-user quality-of-experience (QoE), reduced end-to-end latency, and lower energy consumption. This article presents several emerging technologies, which will enable and define the 5G mobile communications standards. The major research problems, which these new technologies breed, as well as the measurement and test challenges for 5G systems are also highlighted.Comment: IEEE Instrumentation and Measurement Magazine, to appear in the June 2015 issue. arXiv admin note: text overlap with arXiv:1406.6470 by other author
    • …
    corecore