4,381 research outputs found

    Energy Efficient and Reliable ARQ Scheme (ER-ACK) for Mission Critical M2M/IoT Services

    Get PDF
    Wireless sensor networks (WSNs) are the main infrastructure for machine to machine (M2M) and Internet of thing (IoT). Since various sophisticated M2M/IoT services have their own quality-of-service (QoS) requirements, reliable data transmission in WSNs is becoming more important. However, WSNs have strict constraints on resources due to the crowded wireless frequency, which results in high collision probability. Therefore a more efficient data delivering scheme that minimizes both the transmission delay and energy consumption is required. This paper proposes energy efficient and reliable data transmission ARQ scheme, called energy efficient and reliable ACK (ER-ACK), to minimize transmission delay and energy consumption at the same time. The proposed scheme has three aspects of advantages compared to the legacy ARQ schemes such as ACK, NACK and implicit-ACK (I-ACK). It consumes smaller energy than ACK, has smaller transmission delay than NACK, and prevents the duplicated retransmission problem of I-ACK. In addition, resource considered reliability (RCR) is suggested to quantify the improvement of the proposed scheme, and mathematical analysis of the transmission delay and energy consumption are also presented. The simulation results show that the ER-ACK scheme achieves high RCR by significantly reducing transmission delay and energy consumption

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Precise Packet Loss Pattern Generation by Intentional Interference

    Get PDF
    Abstract—Intermediate-quality links often cause vulnerable connectivity in wireless sensor networks, but packet losses caused by such volatile links are not easy to trace. In order to equip link layer protocol designers with a reliable test and debugging tool, we develop a reactive interferer to generate packet loss patterns precisely. By using intentional interference to emulate parameterized lossy links with very low intrusiveness, our tool facilitates both robustness evaluation of protocols and flaw detection in protocol implementation

    Not All Wireless Sensor Networks Are Created Equal: A Comparative Study On Tunnels

    Get PDF
    Wireless sensor networks (WSNs) are envisioned for a number of application scenarios. Nevertheless, the few in-the-field experiences typically focus on the features of a specific system, and rarely report about the characteristics of the target environment, especially w.r.t. the behavior and performance of low-power wireless communication. The TRITon project, funded by our local administration, aims to improve safety and reduce maintenance costs of road tunnels, using a WSN-based control infrastructure. The access to real tunnels within TRITon gives us the opportunity to experimentally assess the peculiarities of this environment, hitherto not investigated in the WSN field. We report about three deployments: i) an operational road tunnel, enabling us to assess the impact of vehicular traffic; ii) a non-operational tunnel, providing insights into analogous scenarios (e.g., underground mines) without vehicles; iii) a vineyard, serving as a baseline representative of the existing literature. Our setup, replicated in each deployment, uses mainstream WSN hardware, and popular MAC and routing protocols. We analyze and compare the deployments w.r.t. reliability, stability, and asymmetry of links, the accuracy of link quality estimators, and the impact of these aspects on MAC and routing layers. Our analysis shows that a number of criteria commonly used in the design of WSN protocols do not hold in tunnels. Therefore, our results are useful for designing networking solutions operating efficiently in similar environments

    Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

    Get PDF
    Traditionally, routing in wireless sensor networks consists of two steps: First, the routing protocol selects a next hop, and, second, the MAC protocol waits for the intended destination to wake up and receive the data. This design makes it difficult to adapt to link dynamics and introduces delays while waiting for the next hop to wake up. In this paper we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. In a dutycycled setting, packets are addressed to sets of potential receivers and forwarded by the neighbor that wakes up first and successfully receives the packet. This reduces delay and energy consumption by utilizing all neighbors as potential forwarders. Furthermore, this increases resilience to wireless link dynamics by exploiting spatial diversity. Our results show that ORW reduces radio duty-cycles on average by 50% (up to 90% on individual nodes) and delays by 30% to 90% when compared to the state of the art
    corecore