17 research outputs found

    A study and comparison of COordinate Rotation DIgital Computer (CORDIC) architectures

    Full text link
    Most of the digital signal processing applications performs operations like multiplication, addition, square-root calculation, solving linear equations etc. The physical implementation of these operations consumes a lot of hardware and, software implementation consumes large memory. Even if they are implemented in hardware, they do not provide high speed, and due to this reason, even today the software implementation dominates hardware. For realizing operations from basic to very complex ones with less hardware, a Co-ordinate Rotation Digital Computer (CORDIC) proves beneficial. It is capable of performing mathematical operations right from addition to highly complex functions with the help of arithmetic unit and shifters only. This paper gives a brief overview of various existing CORDIC architectures, their working principle, application domain and a comparison of these architectures. Different designs are available as per the target, i.e. high accuracy and precision, low area, low latency, hardware efficient, low power, reconfigurability, etc. that can be used as per the application in which the architecture needs to be employed

    Energy-efficient embedded machine learning algorithms for smart sensing systems

    Get PDF
    Embedded autonomous electronic systems are required in numerous application domains such as Internet of Things (IoT), wearable devices, and biomedical systems. Embedded electronic systems usually host sensors, and each sensor hosts multiple input channels (e.g., tactile, vision), tightly coupled to the electronic computing unit (ECU). The ECU extracts information by often employing sophisticated methods, e.g., Machine Learning. However, embedding Machine Learning algorithms poses essential challenges in terms of hardware resources and energy consumption because of: 1) the high amount of data to be processed; 2) computationally demanding methods. Leveraging on the trade-off between quality requirements versus computational complexity and time latency could reduce the system complexity without affecting the performance. The objectives of the thesis are to develop: 1) energy-efficient arithmetic circuits outperforming state of the art solutions for embedded machine learning algorithms, 2) an energy-efficient embedded electronic system for the \u201celectronic-skin\u201d (e-skin) application. As such, this thesis exploits two main approaches: Approximate Computing: In recent years, the approximate computing paradigm became a significant major field of research since it is able to enhance the energy efficiency and performance of digital systems. \u201cApproximate Computing\u201d(AC) turned out to be a practical approach to trade accuracy for better power, latency, and size . AC targets error-resilient applications and offers promising benefits by conserving some resources. Usually, approximate results are acceptable for many applications, e.g., tactile data processing,image processing , and data mining ; thus, it is highly recommended to take advantage of energy reduction with minimal variation in performance . In our work, we developed two approximate multipliers: 1) the first one is called \u201cMETA\u201d multiplier and is based on the Error Tolerant Adder (ETA), 2) the second one is called \u201cApproximate Baugh-Wooley(BW)\u201d multiplier where the approximations are implemented in the generation of the partial products. We showed that the proposed approximate arithmetic circuits could achieve a relevant reduction in power consumption and time delay around 80.4% and 24%, respectively, with respect to the exact BW multiplier. Next, to prove the feasibility of AC in real world applications, we explored the approximate multipliers on a case study as the e-skin application. The e-skin application is defined as multiple sensing components, including 1) structural materials, 2) signal processing, 3) data acquisition, and 4) data processing. Particularly, processing the originated data from the e-skin into low or high-level information is the main problem to be addressed by the embedded electronic system. Many studies have shown that Machine Learning is a promising approach in processing tactile data when classifying input touch modalities. In our work, we proposed a methodology for evaluating the behavior of the system when introducing approximate arithmetic circuits in the main stages (i.e., signal and data processing stages) of the system. Based on the proposed methodology, we first implemented the approximate multipliers on the low-pass Finite Impulse Response (FIR) filter in the signal processing stage of the application. We noticed that the FIR filter based on (Approx-BW) outperforms state of the art solutions, while respecting the tradeoff between accuracy and power consumption, with an SNR degradation of 1.39dB. Second, we implemented approximate adders and multipliers respectively into the Coordinate Rotational Digital Computer (CORDIC) and the Singular Value Decomposition (SVD) circuits; since CORDIC and SVD take a significant part of the computationally expensive Machine Learning algorithms employed in tactile data processing. We showed benefits of up to 21% and 19% in power reduction at the cost of less than 5% accuracy loss for CORDIC and SVD circuits when scaling the number of approximated bits. 2) Parallel Computing Platforms (PCP): Exploiting parallel architectures for near-threshold computing based on multi-core clusters is a promising approach to improve the performance of smart sensing systems. In our work, we exploited a novel computing platform embedding a Parallel Ultra Low Power processor (PULP), called \u201cMr. Wolf,\u201d for the implementation of Machine Learning (ML) algorithms for touch modalities classification. First, we tested the ML algorithms at the software level; for RGB images as a case study and tactile dataset, we achieved accuracy respectively equal to 97% and 83.5%. After validating the effectiveness of the ML algorithm at the software level, we performed the on-board classification of two touch modalities, demonstrating the promising use of Mr. Wolf for smart sensing systems. Moreover, we proposed a memory management strategy for storing the needed amount of trained tensors (i.e., 50 trained tensors for each class) in the on-chip memory. We evaluated the execution cycles for Mr. Wolf using a single core, 2 cores, and 3 cores, taking advantage of the benefits of the parallelization. We presented a comparison with the popular low power ARM Cortex-M4F microcontroller employed, usually for battery-operated devices. We showed that the ML algorithm on the proposed platform runs 3.7 times faster than ARM Cortex M4F (STM32F40), consuming only 28 mW. The proposed platform achieves 15 7 better energy efficiency than the classification done on the STM32F40, consuming 81mJ per classification and 150 pJ per operation

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Digitally-Modulated Transmitter for Wireless Communications

    Get PDF
    With the increased digital processing capabilities of sub-micron CMOS nodes, pushing the digital world towards the antenna is becoming attractive, enabling higher reconfigurability of the transmitter, therefore, more degrees of freedom to end-users. More specifically, by adopting an RF-DAC (DAC working at RF frequency) instead of the traditional Power Amplifier block allows for increased performance of the whole transmitter. Hence, a polar transmitter is being studied and an implementation in 130 nm CMOS node is expected

    ULTRALOW-POWER, LOW-VOLTAGE DIGITAL CIRCUITS FOR BIOMEDICAL SENSOR NODES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems
    corecore