825 research outputs found

    Efficient Location Training Protocols for Localization in Heterogeneous Sensor and Actor Networks

    No full text
    International audienceAbstract--In this work we consider a large-scale geographic area populated by tiny sensors and some more powerful devices called actors, authorized to organize the sensors in their vicinity into short-lived, actor-centric sensor networks. The tiny sensors run on miniature non-rechargeable batteries, are anonymous and are unaware of their location. The sensors differ in their ability to dynamically alter their sleep times. Indeed, the periodic sensors have sleep periods of predefined lengths, established at fabrication time; by contrast, the free sensors can dynamically alter their sleep periods, under program control. The main contribution of this work is to propose an energy-efficient location training protocol for heterogeneous actor-centric sensor networks where the sensors acquire coarse-grain location awareness with respect to the actor in their vicinity. Our analytical analysis, confirmed by experimental evaluation, show that the proposed protocol outperforms the best previously-known location training protocols in terms of the number of sleep/awake transitions, overall sensor awake time, and energy consumption

    SPLAI: Computational Finite Element Model for Sensor Networks

    Get PDF
    Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment

    Protecting the Communication Structure in Sensor Networks

    Get PDF
    In the near future wireless sensor networks will be employed in a wide variety of applications establishing ubiquitous networks that will pervade society. The inherent vulnerability of these massively deployed networks to a multitude of threats, including physical tampering with nodes exacerbates concerns about privacy and security. For example, denial of service attacks (DoS) that compromise or disrupt communications or target nodes serving key roles in the network, e.g. sink nodes, can easily undermine the functionality as well as the performance delivered by the network. Particularly vulnerable are the components of the communications or operation infrastructure. Although, by construction, most sensor network systems do not possess a built-in infrastructure, a virtual infrastructure, that may include a coordinate system, a cluster structure, and designated communication paths, may be established post-deployment in support of network management and operation. Since knowledge of this virtual infrastructure can be instrumental for successfully compromising network security, maintaining the anonymity of the virtual infrastructure is a primary security concern. Somewhat surprisingly, in spite of its importance, the anonymity problem has not been addressed in wireless sensor networks. The main contribution of this work is to propose an energy-efficient protocol for maintaining the anonymity of the virtual infrastructure in a class of sensor network systems. Our solution defines schemes for randomizing communications such that the cluster structure, and coordinate system used remain undetectable and in visible to an observer of network traffic during both the setup and operation phases of the network

    A Routing Algorithm for Extending Mobile Sensor Network’s Lifetime using Connectivity and Target Coverage

    Get PDF
    In this paper, we propose an approach to improving the network lifetime by enhancing Network CONnectivity (NCON) and Target COVerage (TCOV) in randomly deployed Mobile Sensor Network (MSN). Generally, MSN refers to the collection of independent and scattered sensors with the capability of being mobile, if need be. Target coverage, network connectivity, and network lifetime are the three most critical issues of MSN. Any MSN formed with a set of randomly distributed sensors should be able to select and successfully activate some subsets of nodes so that they completely monitor or cover the entire Area of Interest (AOI). Network connectivity, on the other hand ensures that the nodes are connected for the full lifetime of the network so that collection and reporting of data to the sink node are kept uninterrupted through the sensor nodes. Keeping these three critical aspects into consideration, here we propose Socratic Random Algorithm (SRA) that ensures efficient target coverage and network connectivity alongside extending the lifetime of the network. The proposed method has been experimentally compared with other existing alternative mechanisms taking appropriate performance metrics into consideration. Our simulation results and analysis show that SRA performs significantly better than the existing schemes in the recent literature

    Efficient Binary scheme for Training Heterogeneous Sensor Actor Networks

    No full text
    International audienceSensor networks are expected to evolve into long-lived, autonomous networked systems whose main mission is to provide in-situ users – called actors – with real-time information in support of specific goals supportive of their mission. The network is populated with a heterogeneous set of tiny sensors. The free sensors alternate between sleep and awake periods, under program control in response to computational and communication needs. The periodic sensors alternate between sleep periods and awake periods of predefined lengths, established at the fabrication time. The architectural model of an actor-centric network used in this work comprises in addition to the tiny sensors a set of mobile actors that organize and manage the sensors in their vicinity. We take the view that the sensors deployed are anonymous and unaware of their geographic location. Importantly, the sensors are not, a priori, organized into a network. It is, indeed, the interaction between the actors and the sensor population that organizes the sensors in a disk around each actor into a short-lived, mission-specific, network that exists for the purpose of serving the actor and that will be disbanded when the interaction terminates. The task of setting up this form of actor-centric network involves a training stage where the sensors acquire dynamic coordinates relative to the actor in their vicinity. The main contribution of this work is to propose an energy- efficient training protocol for actor-centric heterogeneous sensor networks. Our protocol outperforms all know training protocols in the number of sleep/awake transitions per sensor needed by the training process. Specifically, in the presence of kk coronas, no sensor will experience more thanlog(k) \lceil log(k)\rceil sleep/awake transitions and awake periods

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9
    corecore