672 research outputs found

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching

    Get PDF
    Fog computing is a promising architecture to provide economical and low latency data services for future Internet of Things (IoT)-based network systems. Fog computing relies on a set of low-power fog nodes (FNs) that are located close to the end users to offload the services originally targeting at cloud data centers. In this paper, we consider a specific fog computing network consisting of a set of data service operators (DSOs) each of which controls a set of FNs to provide the required data service to a set of data service subscribers (DSSs). How to allocate the limited computing resources of FNs to all the DSSs to achieve an optimal and stable performance is an important problem. Therefore, we propose a joint optimization framework for all FNs, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion. In the framework, we first formulate a Stackelberg game to analyze the pricing problem for the DSOs as well as the resource allocation problem for the DSSs. Under the scenarios that the DSOs can know the expected amount of resource purchased by the DSSs, a many-to-many matching game is applied to investigate the pairing problem between DSOs and FNs. Finally, within the same DSO, we apply another layer of many-to-many matching between each of the paired FNs and serving DSSs to solve the FN-DSS pairing problem. Simulation results show that our proposed framework can significantly improve the performance of the IoT-based network systems

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    On the Two-user Multi-carrier Joint Channel Selection and Power Control Game

    Full text link
    In this paper, we propose a hierarchical game approach to model the energy efficiency maximization problem where transmitters individually choose their channel assignment and power control. We conduct a thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium. Interestingly, we formally show that a spectrum orthogonalization naturally occurs when users decide sequentially about their transmitting carriers and powers, delivering a binary channel assignment. Both analytical and simulation results are provided for assessing and improving the performances in terms of energy efficiency and spectrum utilization between the simultaneous-move game (with synchronous decision makers), the social welfare (in a centralized manner) and the proposed Stackelberg (hierarchical) game. For the first time, we provide tight closed-form bounds on the spectral efficiency of such a model, including correlation across carriers and users. We show that the spectrum orthogonalization capability induced by the proposed hierarchical game model enables the wireless network to achieve the spectral efficiency improvement while still enjoying a high energy efficiency.Comment: 31 pages, 13 figures, accepted in IEEE Transactions on Communication

    Energy Efficient Two-hop D2D Communications Underlay 5G Networks: A Stackelberg Game Approach

    Get PDF
    Although coverage and capacity are the key elements of the 5G user experience, a dominant part of the population living in rural areas still experience inferior connectivity. Several solutions have been proposed to address this issue. They include deploying small cells, increasing the number of sectors per eNodeB, and reusing signal repetition. However, most of them require complex deployment and expensive fees. Accordingly, many efforts have been deployed on coverage extension software. Even so, many critical issues related to public safety, relay capacity, and devices power constraints are still challenging. As a contribution, we propose in this paper a spectral and energy-efficient two-hop device to device (D2D) relay selection algorithm. Our main goal is to extend the connectivity to the out-of-coverage (OOC) devices. Contrarily to previous solutions in which the relay is selected centrally or individually, we propose a distributed two-stage algorithm based on the Stackelberg game to involve all the competing devices. In the first stage, the OOC devices (OCDUs) are matched with the relays maximizing their spectral efficiency, and the required bandwidth for each one is determined. Then, a power control stage is investigated to calculate the optimal transmission power. The numerical and simulation analysis shows that the proposed schema outperforms the former solutions in total system capacity, spectral efficiency (SE), and energy efficiency (EE) while reducing the complexity
    corecore