1,393 research outputs found

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Coordinated Multicast Beamforming in Multicell Networks

    Full text link
    We study physical layer multicasting in multicell networks where each base station, equipped with multiple antennas, transmits a common message using a single beamformer to multiple users in the same cell. We investigate two coordinated beamforming designs: the quality-of-service (QoS) beamforming and the max-min SINR (signal-to-interference-plus-noise ratio) beamforming. The goal of the QoS beamforming is to minimize the total power consumption while guaranteeing that received SINR at each user is above a predetermined threshold. We present a necessary condition for the optimization problem to be feasible. Then, based on the decomposition theory, we propose a novel decentralized algorithm to implement the coordinated beamforming with limited information sharing among different base stations. The algorithm is guaranteed to converge and in most cases it converges to the optimal solution. The max-min SINR (MMS) beamforming is to maximize the minimum received SINR among all users under per-base station power constraints. We show that the MMS problem and a weighted peak-power minimization (WPPM) problem are inverse problems. Based on this inversion relationship, we then propose an efficient algorithm to solve the MMS problem in an approximate manner. Simulation results demonstrate significant advantages of the proposed multicast beamforming algorithms over conventional multicasting schemes.Comment: 10pages, 9 figure
    • …
    corecore