610 research outputs found

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Energy Efficient Massive MIMO Array Configurations

    Full text link
    The high spectral efficiency of massive MIMO (Multiple Input Multiple Output) is mainly achieved through the exploitation of spatial multiplexing, i.e. by using a high number of MIMO layers that are applied simultaneously to many users. The power consumption of a massive MIMO base station is determined by the hardware driving a high number of antenna ports and elements. This paper focuses on practical deployment situations with varying user load. During hours with low number of users a certain significant part of hardware power consumption would remain with conventional massive MIMO processing, while the full potential of spectral efficiency cannot be exploited due to the low number of users, resulting in low power efficiency and cost. We investigate the impact of different hybrid array architectures on spectral efficiency, average user throughput and power consumption and show how to design a massive MIMO system with significantly improved energy efficiency for a given target scenario, while maintaining a targeted service quality

    An Overview of Massive MIMO Technology Components in METIS

    Get PDF
    As the standardization of full-dimension MIMO systems in the Third Generation Partnership Project progresses, the research community has started to explore the potential of very large arrays as an enabler technology for meeting the requirements of fifth generation systems. Indeed, in its final deliverable, the European 5G project METIS identifies massive MIMO as a key 5G enabler and proposes specific technology components that will allow the cost-efficient deployment of cellular systems taking advantage of hundreds of antennas at cellular base stations. These technology components include handling the inherent pilot-data resource allocation trade-off in a near optimal fashion, a novel random access scheme supporting a large number of users, coded channel state information for sparse channels in frequency-division duplexing systems, managing user grouping and multi-user beamforming, and a decentralized coordinated transceiver design. The aggregate effect of these components enables massive MIMO to contribute to the METIS objectives of delivering very high data rates and managing dense populations
    • …
    corecore