97 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    An Overview on IEEE 802.11bf: WLAN Sensing

    Full text link
    With recent advancements, the wireless local area network (WLAN) or wireless fidelity (Wi-Fi) technology has been successfully utilized to realize sensing functionalities such as detection, localization, and recognition. However, the WLANs standards are developed mainly for the purpose of communication, and thus may not be able to meet the stringent requirements for emerging sensing applications. To resolve this issue, a new Task Group (TG), namely IEEE 802.11bf, has been established by the IEEE 802.11 working group, with the objective of creating a new amendment to the WLAN standard to meet advanced sensing requirements while minimizing the effect on communications. This paper provides a comprehensive overview on the up-to-date efforts in the IEEE 802.11bf TG. First, we introduce the definition of the 802.11bf amendment and its formation and standardization timeline. Next, we discuss the WLAN sensing use cases with the corresponding key performance indicator (KPI) requirements. After reviewing previous WLAN sensing research based on communication-oriented WLAN standards, we identify their limitations and underscore the practical need for the new sensing-oriented amendment in 802.11bf. Furthermore, we discuss the WLAN sensing framework and procedure used for measurement acquisition, by considering both sensing at sub-7GHz and directional multi-gigabit (DMG) sensing at 60 GHz, respectively, and address their shared features, similarities, and differences. In addition, we present various candidate technical features for IEEE 802.11bf, including waveform/sequence design, feedback types, as well as quantization and compression techniques. We also describe the methodologies and the channel modeling used by the IEEE 802.11bf TG for evaluation. Finally, we discuss the challenges and future research directions to motivate more research endeavors towards this field in details.Comment: 31 pages, 25 figures, this is a significant updated version of arXiv:2207.0485

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Improvement of 5G performance through network densification in millimetre wave band

    Get PDF
    Recently, there has been a substantial growth in mobile data traffic due to the widespread of data hungry devices such as mobiles and laptops. The anticipated high traffic demands and low latency requirements stemmed from the Internet of Things (IoT) and Machine Type Communications (MTC) can only be met with radical changes to the network paradigm such as harnessing the millimetre wave (mmWave) band in Ultra-Dense Network (UDN). This thesis presents many challenges, problems and questions that arise in research and design stage of 5G network. The main challenges of 5G in mmWave can be characterised with the following attributes: i- huge traffic demands, with very high data rate requirements, ii- high interference in UDN, iii increased handover in UDN, higher dependency on Line of Sight (LOS) coverage and high shadow fading, and iv-massive MTC traffic due to billions of connected devices. In this work, software simulation tools have been used to evaluate the proposed solutions. Therefore, we have introduced 5G network based on network densification. Network densification includes densification over frequency through mmWave, and densification over space through higher number of antennas, Higher Order Sectorisation (HOS), and denser deployment of small-cells. Our results show that the densification theme has significantly improved network capacity and user Quality of Experience (QoE). UDN network can efficiently raise the user experience to the level that 5G vision promised. However, one of the drawback of using UDN and HOS is the significant increase in Inter-Cell Interference (ICI). Therefore, ICI has been addressed in this work to increase the gain of densification. ICI can degrade the performance of wireless network, particularly in UDN due to the increased interference from surrounding cells. We have used Fractional Frequency Reuse (FFR) as ICI Coordination (ICIC) for UDN network and HOS environment. The work shows that FFR has improved the network performance in terms of cell-edge data throughput and average cell throughput, and maintain the peak data throughput at a certain threshold. Additionally, HOS has shown even greater gain over default sectored sites when the interference is carefully coordinated. To generalise the principle of densification, we have introduced Distributed Base Station (DBS) as the envisioned network architecture for 5G in mmWave. Remotely distributed antennas in DBS architecture have been harnessed in order to compensate for the high path loss that characterise mmWave propagation. The proposed architecture has significantly improved the user data throughput, decreased the unnecessary handovers as a result of dense network, increased the LOS coverage probability, and reduced the impact of shadow fading. Additionally, this research discusses the regulatory requirements at mmWave band for the Maximum Permissible Exposure (MPE). Finally, scheduling massive MTC traffic in 5G has been considered. MTC is expected to contribute to the majority of IoT traffic. In this context, an algorithm has been developed to schedule this type of traffic. The results demonstrate the gain of using distributed antennas on MTC traffic in terms of spectral efficiency, data throughput, and fairness. The results show considerable improvement in the performance metrics. The combination of these contributions has provided remarkable increase in data throughput to achieve the 5G vision of “massive” capacity and to support human and machine traffic

    Location, Location, Location: Maximizing mmWave LAN Performance through Intelligent Wireless Networking Strategies

    Get PDF
    The main objective of this dissertation is to design and evaluate intelligent techniques to maximize mmWave wireless local-area network (WLAN) performance. To meet the ever-increasing data demand of various bandwidth-hungry applications, we propose techniques to enable consistently ultra-high-rate mmWave communication in the wireless environment. However, the weak diffraction of mmWave signals makes them extremely sensitive to blockage effects caused by real-world obstacles, and this is a primary challenge to overcome for the feasibility of mmWave communications. To this end, we exploit location sensitivity to explore robust mmWave WLAN designs that expedite the full realization of ubiquitous mmWave wireless connectivity. The techniques investigated to exploit location sensitivity are the use of multiple access points (APs), controlled mobility, AP-user association mechanisms, and environment-aware prediction We first develop optimal multi-AP planning approaches to maximize line-of-sight connectivity and aggregate throughput in mmWave WLANs, and then study multi-AP association mechanisms to achieve low-overhead and blockage-robust mmWave wireless communications among multiple users and multiple APs. Furthermore, we explore the potential benefits achievable from AP mobility technology, which yields insights on the best configurations of mobile APs. We also develop an environment-aware link-quality predictor to accurately derive dynamic mmWave link quality due to static blockages and small changes in device locations, which provides a basis for the development of anticipatory networking with proactive resource-allocation schemes. In a complementary direction for evaluating the performance of mmWave networks, we develop and implement advanced features for dense wireless networks that increasingly characterize many mmWave scenarios of interest in the widely-used network simulator ns-3, including a sparse cluster-based wireless channel model that statistically models multi-path components in mmWave WLANs.Ph.D

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology
    corecore